【題目】為了打造區(qū)域中心城市,實現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計劃有序推進(jìn).新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3,現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號的挖掘機(jī)來完成這項工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:
(1)若租用甲、乙兩種型號的挖掘機(jī)共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機(jī)各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有幾種不同的租用方案?
【答案】(1)5臺、3臺(2)有一種租車方案,即租用1輛甲型挖掘機(jī)和6輛乙型挖掘機(jī)
【解析】試題分析:(1)設(shè)甲、乙兩種型號的挖掘機(jī)各需x臺、y臺.等量關(guān)系:甲、乙兩種型號的挖掘機(jī)共8臺;每小時挖掘土石方540m3;
(2)設(shè)租用m輛甲型挖掘機(jī),n輛乙型挖掘機(jī),根據(jù)題意列出二元一次方程,求出其正整數(shù)解;然后分別計算支付租金,選擇符合要求的租用方案.
試題解析:(1)設(shè)甲、乙兩種型號的挖掘機(jī)各需x臺、y臺.
依題意得:
解得.
答:甲、乙兩種型號的挖掘機(jī)各需5臺、3臺;
(2)設(shè)租用臺甲型挖掘機(jī), 臺乙型挖掘機(jī).
依題意得: (, 均為自然數(shù)),
∴
∴方程的解為.
當(dāng)m=9,n=0時,支付租金:100×9+120×0=900元>850元,超出限額;
當(dāng)m=5,n=3時,支付租金:100×5+120×3=860元>850元,超出限額;
當(dāng)m=1,n=6時,支付租金:100×1+120×6=820元,符合要求.
答:有一種租車方案,即租用1輛甲型挖掘機(jī)和6輛乙型挖掘機(jī).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2)
(1)寫出點A、B的坐標(biāo):A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點坐標(biāo)A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一次函數(shù)y=-x+3的圖像沿y軸向下平移2個單位長度,所得圖像對應(yīng)的函數(shù)表達(dá)式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.將三角尺OCD繞點O按每秒30°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)?shù)?/span>________ 秒時,直線CD恰好與直線MN垂直.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人進(jìn)了一批貨,他以比進(jìn)價a高出20%的價格作為標(biāo)價銷售這批商品,由于市場疲軟,商人只好降價10%將商品售出,在這次商業(yè)活動中,此商人的利潤為__________ 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com