如圖,⊙O沿凸多邊形A1A2A3…An-1An的外側(cè)(圓與邊相切)作無(wú)滑動(dòng)的滾動(dòng).假設(shè)⊙O的周長(zhǎng)是凸多邊形A1A2A3…An-1An的周長(zhǎng)的一半,那么當(dāng)⊙O回到出發(fā)點(diǎn)時(shí),它自身滾動(dòng)的圈數(shù)為( 。
A.1B.2C.3D.4

由于凸多邊形周長(zhǎng)是圓周長(zhǎng)的2倍,另外凸多邊形的外角和是360°,
所以⊙O回到出發(fā)點(diǎn)時(shí)共滾動(dòng)2+1=3圈.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,AB為⊙O1、⊙O2的外公切線,切點(diǎn)分別為A、B,連心線O1O2分別交⊙O1于D、交AB于C,連接AD、AP、BP.求證:(1)ADBP;(2)CP•CO1=CD•CO2;(3)
AD
AP
=
PC
BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某街道兩旁正在安裝漂亮的路燈,經(jīng)查看路燈圖紙,小紅發(fā)現(xiàn)該路燈的設(shè)計(jì)可以看作是“相切兩圓”的一部分,部分?jǐn)?shù)據(jù)如圖所示:⊙O1、⊙O2相切于點(diǎn)C,CD切⊙O1于點(diǎn)C,A、B為路燈燈泡.已知∠AO1O2=∠BO2O1=60°.A、B、C三點(diǎn)距地面MN的距離分別為150
3
cm,180
3
cm,100
3
cm,請(qǐng)根據(jù)以上圖文信息,求:
(1)⊙O1、⊙O2的半徑分別多少cm?
(2)把A、B兩個(gè)燈泡看作兩個(gè)點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正六邊形的外接圓的圓心是O,半徑是4cm,則這個(gè)正六邊形的邊心距是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,已知△PAC是圓O的內(nèi)接正三角形,那么∠OAC﹦______;
(2)如圖2,設(shè)AB是圓O的直徑,AC是圓的任意一條弦,∠OAC﹦α﹒
①如果α﹦45°,那么AC能否成為圓內(nèi)接正多邊形的一條邊?若有可能,那么此多邊形是幾邊形?請(qǐng)說(shuō)明理由﹒
②若AC是圓的內(nèi)接正n邊形的一邊,則用含n的代數(shù)式表示α應(yīng)為_(kāi)_____﹒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),四邊形ABCD是⊙O的內(nèi)接四邊形,點(diǎn)C是
BD
的中點(diǎn),過(guò)點(diǎn)C的切線與AD的延長(zhǎng)線交于點(diǎn)E.
(1)求證:AB•DE=CD•BC;
(2)如果四邊形ABCD仍是⊙O的內(nèi)接四邊形,點(diǎn)C在劣弧
BD
上運(yùn)動(dòng),點(diǎn)E在AD的延長(zhǎng)線上運(yùn)動(dòng),切線CE變?yōu)楦罹EFC,請(qǐng)問(wèn)要使(1)的結(jié)論成立還需要具備什么條件?請(qǐng)你在圖(2)上畫(huà)出示意圖,標(biāo)明有關(guān)字母,不要求進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,以BC為直徑的半圓中,點(diǎn)A、D在半圓周上且AD=DC,若∠ABC=30°,則∠ADC的度數(shù)為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,圓O是△ABC的外接圓,∠BAC與∠ABC的平分線相交于點(diǎn)I,延長(zhǎng)AI交圓O于點(diǎn)D,連接BD、DC.
(1)求證:BD=DC=DI;
(2)若圓O的半徑為10cm,∠BAC=120°,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是弦,OD⊥BC于E,交
BC
于D.
(1)請(qǐng)寫(xiě)出四個(gè)不同類型的正確結(jié)論;
(2)連接CD,設(shè)∠CDB=α,∠ABC=β,試找出α與β之間的一種關(guān)系式,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案