【題目】兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反,即點P(xy)關(guān)于原點的對稱點為P′____.

【答案】(-x,-y).

【解析】試題分析:兩點關(guān)于原點對稱,則對稱的兩個點的橫縱坐標(biāo)分別互為相反數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將點A(1,3)向左平移2個單位,再向下平移4個單位得到B,則點B的坐標(biāo)為( )

A. (-2,-1) B. (-1,0) C. (-1,-1) D. (-2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列給出的各數(shù)中,最小的一個是( )

A. -2 B. -5 C. 0 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A. a>b,b<c,則a>c B. a>b,則ac>bc

C. a>b,則ac2>bc2 D. ac2>bc2,則a>b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B處,兩條折痕與斜邊AB分別交于點E、F,則DF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2-2ax+ca≠0)與y軸交于點C0,4),與x軸交于點A、B,點A的坐標(biāo)為(40.

1)求該拋物線的解析式;

2)點Q是線段AB上的動點,過點QQE∥AC,交BC于點E,連接CQ,當(dāng)△CQE的面積為3時,求點Q的坐標(biāo);

3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(20.問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個多邊形的內(nèi)角和與外角和相等,那么這個多邊形是( )

A.四邊形B.五邊形C.六邊形D.七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與x軸交于點A(0,4)、E(0,-2)兩點,與y軸交于點B(2,0),連結(jié)AB。過點A作直線AKAB,動點P從點A出發(fā)以每秒個單位長度的速度沿射線AK運動,設(shè)運動時間為t秒,過點P作PCx軸,垂足為C,把ACP沿AP對折,使點C落在點D處。

(1)、求拋物線的解析式;

(2)、當(dāng)點D在ABP的內(nèi)部時,ABP與ADP不重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式,并直接寫出t的取值范圍;

(3)、是否存在這樣的時刻,使動點D到點O的距離最小,若存在請求出這個最小距離,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《田畝比類乘除捷法》是我國古代數(shù)學(xué)家楊輝的著作,其中有一個數(shù)學(xué)問題:“直田積八百六十四步,只云長闊共六十步,問長多闊幾何”.意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多多少步?根據(jù)題意得,長比寬多______步.

查看答案和解析>>

同步練習(xí)冊答案