如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3,那么PP′的長等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:因為△ACP′是△ABP旋轉(zhuǎn)以后的圖形,所以△ACP′≌△ABP,∠BAP=∠PP′C,AP=AP′;又有∠BAP+∠PAC=90°可得
∠PP′C+∠PAC=90°,故△APP′是等腰直角三角形,由勾股定理得PP′的大。
解答:根據(jù)旋轉(zhuǎn)的性質(zhì),易得△ACP′≌△ABP,∠BAP=∠CAP′,AP=AP′,
∵∠BAP+∠PAC=90°,
∴∠PP′C+∠PAC=90°,
∴△APP′是等腰直角三角形,
由勾股定理得PP′===3
故選A.
點評:本題考查了圖形的旋轉(zhuǎn)變化,旋轉(zhuǎn)以后的圖形與原圖形全等,解答時要分清逆時針還是順時針旋轉(zhuǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,BC是斜邊,點P是△ABC內(nèi)一定點,延長BP至P′,將△ABP繞點A旋轉(zhuǎn)后,與△ACP′重合,如果AP=
2
,那么PP′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,△ABC是等腰三角形,AB=AC,D為直線BC上一點,DE⊥AC,DF⊥AB,CH⊥AB,
(1)如圖(1)若D為BC的中點,求證:DE+DF=CH.
(2)如圖(2)若D為BC延長線上一點,其他條件不變,線段DE.DF.CH 之間有何數(shù)量關(guān)系,請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點A按順時針方向旋轉(zhuǎn)45°后得到△AB′C′,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是
 
(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•資陽)如圖,△ABC是等腰三角形,點D是底邊BC上異于BC中點的一個點,∠ADE=∠DAC,DE=AC.運用這個圖(不添加輔助線)可以說明下列哪一個命題是假命題?(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等腰直角三角形,D為斜邊AB上任意一點(不與A,B重合),連接CD,作EC⊥DC,且EC=DC,連接AE.
(1)求證:∠E+∠ADC=180°.
(2)猜想:當(dāng)點D在何位置時,四邊形AECD是正方形?說明理由.

查看答案和解析>>

同步練習(xí)冊答案