【題目】隨著我國的發(fā)展與強大,中國文化與世界各國文化的交流與融合進一步加強.為了增進世界各國人民對中國語言和文化的理解,在世界各國建立孔子學(xué)院,推廣漢語,傳播中華文化.同時,各國學(xué)校之間的交流活動也逐年增加.在與國際友好學(xué)校交流活動中,小敏打算制做一個正方體禮盒送給外國朋友,每個面上分別書寫一種中華傳統(tǒng)美德,一共有仁義禮智信孝六個字.如圖是她設(shè)計的禮盒平面展開圖,那么字對面的字是( 。

A. B. C. D.

【答案】B

【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.

解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,

是相對面,

是相對面,

是相對面,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在正方形ABCD中,AB=6,P為邊CD上一點,過P點作PEBD于點E,連接BP.

(1)OBP的中點,連接CO并延長交BD于點F

①如圖1,連接OE,求證:OEOC;

②如圖2,若,求DP的長;

(2)=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx﹣4(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數(shù)的解析式及點C的坐標;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積;
(3)若點P,Q同時從A點出發(fā),如圖2(注:圖2與圖1完全相同),都以每秒1個單位長度的速度分別沿線段AB,AC運動,當(dāng)其中一點到達終點時,另一點也隨之停止運動,當(dāng)P,Q運動到t秒時,將△APQ沿PQ所在直線翻折,點A恰好落在拋物線上E處,判定此時四邊形APEQ的形狀,說明理由,并求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某路公交車從起點經(jīng)過A、B、C、D站到達終點,一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負數(shù)表示下車的人數(shù))

(1)到終點下車還有________.

(2)車行駛在那兩站之間車上的乘客最多?________站和________

(3)若每人乘坐一站需買票1元,問該車出車一次能收入多少錢?寫出算式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖案中,可以看作中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答;
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來
(Ⅳ)原不等式組的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(Ⅰ)如圖①,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=32°,求∠P的大。

(Ⅱ)如圖②,D為優(yōu)弧ADC上一點,且DO的延長線經(jīng)過AC的中點E,連接DC與AB相交于點P,若∠CAB=16°,求∠DPA的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為1,點P是AD邊上的一個動點,點A關(guān)于直線BP的對稱點是點Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.

(1)BQ+DQ的最小值是_______,此時x的值是_______;

(2)如圖,若PQ的延長線交CD邊于點E,并且CQD=90°

求證:點E是CD的中點; 求x的值.

(3)若點P是射線AD上的一個動點,請直接寫出當(dāng)CDQ為等腰三角形時x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

同步練習(xí)冊答案