【題目】(1)已知x=﹣3是關(guān)于x的方程2k﹣x﹣k(x+4)=5的解,求k的值;
(2)在(1)的條件下,已知線段AB=12cm,點(diǎn)C是直線AB上一點(diǎn),且BC=kAC,若點(diǎn)D是AC的中點(diǎn),求線段CD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(Ⅰ)請(qǐng)寫出AF與BE的數(shù)量關(guān)系與位置關(guān)系分別是什么,并證明.
(Ⅱ)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)閮蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,ABCD 中,∠ABC、∠ADC的平分線分別交AD、BC于點(diǎn)E、F.
(1)求證:四邊形EBFD是平行四邊形;
(2)小明在完成(1)的證明后繼續(xù)進(jìn)行了探索.連接AF、CE,分別交BE、FD于點(diǎn)G、H,得到四邊形EGFH.此時(shí),他猜想四邊形EGFH是平行四邊形,請(qǐng)?jiān)诳驁D(圖2)中補(bǔ)全他的證明思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2008年奧運(yùn)會(huì)將在我國(guó)舉行,它的標(biāo)志是由五個(gè)__________相交而成.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個(gè)交點(diǎn)是C,一次函數(shù)y=﹣x+m(m為實(shí)數(shù))的圖象為直線l,l分別交x軸,y軸于A,B兩點(diǎn),如圖1.
(1)B點(diǎn)坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °;
(2)若點(diǎn)N是直線AB與半圓CO的一個(gè)公共點(diǎn)(兩個(gè)公共點(diǎn)時(shí),N為右側(cè)一點(diǎn)),過(guò)點(diǎn)N作⊙P的切線交x軸于點(diǎn)E,如圖2.
①是否存在這樣的m的值,使得△EBN是直角三角形?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
②當(dāng)時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①全等三角形的形狀相同,大小相等;②全等三角形的對(duì)應(yīng)邊相等;③全等三角形的對(duì)應(yīng)角相等;④全等三角形的周長(zhǎng),面積分別相等;⑤所有的等邊三角形都是全等三角形.其中正確的說(shuō)法有( )
A.5個(gè) B.4個(gè) C.3個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形具有而菱形不具有的性質(zhì)是( )
A.兩組對(duì)邊分別平行
B.對(duì)角線相等
C.對(duì)角線互相平分
D.兩組對(duì)角分別相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.在平面直角坐標(biāo)系中,若點(diǎn)M(1,4)與點(diǎn)N(x,4)之間的距離是3,則x的值是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com