對(duì)于函數(shù)y=
6
x
,下列說法錯(cuò)誤的是( 。
A.它的圖象分布在一、三象限
B.它的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形
C.當(dāng)x>0時(shí),y的值隨x的增大而增大
D.當(dāng)x<0時(shí),y的值隨x的增大而減小
A、∵函數(shù)y=
6
x
中k=6>0,∴此函數(shù)圖象的兩個(gè)分支分別在一、三象限,故本選項(xiàng)正確;
B、∵函數(shù)y=
6
x
是反比例函數(shù),∴它的圖象既是軸對(duì)稱圖形又是中心對(duì)稱圖形,故本選項(xiàng)正確;
C、∵當(dāng)x>0時(shí),函數(shù)的圖象在第一象限,∴y的值隨x的增大而減小,故本選項(xiàng)錯(cuò)誤;
D、∵當(dāng)x<0時(shí),函數(shù)的圖象在第三象限,∴y的值隨x的增大而減小,故本選項(xiàng)正確.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道,對(duì)于二次函數(shù)y=a(x+m)2+k的圖象,可由函數(shù)y=ax2的圖象進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”.左右、上下平移的路徑稱為朋友路徑,對(duì)應(yīng)點(diǎn)之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)y=
k
x
都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”.
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個(gè)單位,再向下平移3個(gè)單位,朋友距離=
12+32
=
10

(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向
 
,再向下平移7單位,相應(yīng)的朋友距離為
 

(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離.
(3)探究三:為函數(shù)y=
3x+4
x+1
和它的基本函數(shù)y=
1
x
,找到朋友路徑,并求相應(yīng)的朋友距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

、(本題10分)我們知道,對(duì)于二次函數(shù)y=a(x+m)2+k的圖像,可由函數(shù)y=ax2的圖像  進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”。左右、上下平移的路徑稱為朋友路徑,對(duì)應(yīng)點(diǎn)之間的線段距離稱為朋友距離。

由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”。

如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個(gè)單位,再向下平移3個(gè)單位,朋友距離=.

1.(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向      ,再向下平移7單位,相應(yīng)的朋友距離為            。

2.(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離。

3.(3)探究三:為函數(shù)和它的基本函數(shù),找到朋友路徑,

    并求相應(yīng)的朋友距離。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

、(本題10分)我們知道,對(duì)于二次函數(shù)y=a(x+m)2+k的圖像,可由函數(shù)y=ax2的圖像 進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”。左右、上下平移的路徑稱為朋友路徑,對(duì)應(yīng)點(diǎn)之間的線段距離稱為朋友距離。
由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”。
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個(gè)單位,再向下平移3個(gè)單位,朋友距離=.
【小題1】(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向     ,再向下平移7單位,相應(yīng)的朋友距離為            
【小題2】(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離。
【小題3】(3)探究三:為函數(shù)和它的基本函數(shù),找到朋友路徑,
并求相應(yīng)的朋友距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省金華市浦江六中上學(xué)期九年級(jí)月考數(shù)學(xué)卷 題型:解答題

、(本題10分)我們知道,對(duì)于二次函數(shù)y=a(x+m)2+k的圖像,可由函數(shù)y=ax2的圖像 進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”。左右、上下平移的路徑稱為朋友路徑,對(duì)應(yīng)點(diǎn)之間的線段距離稱為朋友距離。
由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”。
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個(gè)單位,再向下平移3個(gè)單位,朋友距離=.
【小題1】(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向     ,再向下平移7單位,相應(yīng)的朋友距離為            。
【小題2】(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離。
【小題3】(3)探究三:為函數(shù)和它的基本函數(shù),找到朋友路徑,
并求相應(yīng)的朋友距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省金華市上學(xué)期九年級(jí)月考數(shù)學(xué)卷 題型:解答題

、(本題10分)我們知道,對(duì)于二次函數(shù)y=a(x+m)2+k的圖像,可由函數(shù)y=ax2的圖像  進(jìn)行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”。左右、上下平移的路徑稱為朋友路徑,對(duì)應(yīng)點(diǎn)之間的線段距離稱為朋友距離。

由此,我們所學(xué)的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)都可以作為“基本函數(shù)”,并進(jìn)行向左或向右平移一次、再向上或向下平移一次得到相應(yīng)的“朋友函數(shù)”。

如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個(gè)單位,再向下平移3個(gè)單位,朋友距離=.

1.(1)探究一:小明同學(xué)經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向      ,再向下平移7單位,相應(yīng)的朋友距離為             。

2.(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應(yīng)的朋友距離。

3.(3)探究三:為函數(shù)和它的基本函數(shù),找到朋友路徑,

     并求相應(yīng)的朋友距離。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案