如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,AB=10,以AB為直徑的⊙與y軸正半軸交于點(diǎn)C,連接BC、AC,CD是⊙的切線,AD⊥CD于點(diǎn)D,tan∠CAD=,拋物線過A、B、C三點(diǎn).

(1)求證:∠CAD=∠CAB;
(2)求拋物線的解析式;
(3)判斷拋物線的頂點(diǎn)E是否在直線CD上,并說明理由.

(1)證明∠CA=∠CAD,∠CAB=∠CA,得∠CAD=∠CAB;(2) (3)拋物線頂點(diǎn)E在直線CD上;理由將E(3,)代入直線DC的解析式y(tǒng)=x+4中,右邊=×3+4==左邊,得拋物線頂點(diǎn)E在直線CD上

解析試題分析:(1)證明:連接C,
∵CD是⊙的切線,
C⊥CD,
∵AD⊥CD,
C∥AD,
∴∠CA=∠CAD,
A=C,
∴∠CAB=∠CA,
∴∠CAD=∠CAB;              
(2)解:①∵AB是⊙的直徑,

∴∠ACB=90°,
∵OC⊥AB,
∴∠CAB=∠OCB,
∴△CAO∽△BCO,
,
即OC2=OA•OB,
∵tan∠CAO=tan∠CAD=,
∴AO=2CO,
又∵AB=10,
∴OC2=2CO(10-2CO),
∵CO>0,
∴CO=4,AO=8,BO=2,
∴A(8,0),B(-2,0),C(0,4),             
∵拋物線y=ax2+bx+c過點(diǎn)A,B,C三點(diǎn),
∴c=4,
由題意得:,
解得:
∴拋物線的解析式為:;              
②設(shè)直線DC交x軸于點(diǎn)F,
∴△AOC≌△ADC,
∴AD=AO=8,
C∥AD,
∴△FC∽△FAD,
,
∴8(BF+5)=5(BF+10),
∴BF=,F(xiàn)();              
設(shè)直線DC的解析式為y=kx+m,則,
解得:?,
∴直線DC的解析式為y=x+4,
=得頂點(diǎn)E的坐標(biāo)為(3,),
將E(3,)代入直線DC的解析式y(tǒng)=x+4中,
右邊=×3+4==左邊,
∴拋物線頂點(diǎn)E在直線CD上;              
考點(diǎn):拋物線
點(diǎn)評:本題考查拋物線,要求考生會用待定系數(shù)法求拋物線的解析式,會判斷一個(gè)點(diǎn)是否在函數(shù)圖象上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案