【題目】如圖,在等邊ABC中,DBC邊的中點(diǎn),以AD為邊作等邊ADE.

(1)求∠CAE的度數(shù);

(2)AB邊的中點(diǎn)F,連接CF、CE,試說明四邊形AFCE是矩形.

【答案】(1)CAE=30°;(2)證明見解析.

【解析】分析:(1)根據(jù)等邊三角形三線合一的特點(diǎn),易求得∠DAC=30°,則∠CAE=∠DAE-∠DAC.
(2)先證明四邊形AECF是平行四邊形,然后根據(jù)∠CFA=∠FAE=90°,由矩形的定義判定四邊形AFCE是矩形.

詳解:

1 ∵△ABC是等邊三角形,且DBC中點(diǎn),

DA平分∠BAC,即∠DAB=DAC=30°

∵△DAE是等邊三角形,

∴∠DAE=60°

∴∠CAE=DAE-CAD=30°;

2)證明:∵△BAC是等邊三角形,FAB中點(diǎn),

CFAB;

∴∠BFC=90°,

由(1)知:∠CAE=30°,∠BAC=60°;

∴∠FAE=90°;

AECF;

∵△BAC是等邊三角形,且AD、CF分別是BCAB邊的中線,

AD=CF

AD=AE,∴CF=AE

∴四邊形AFCE是平行四邊形;

∵∠AFC=FAE=90°,

∴四邊形AFCE是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB表示路燈,當(dāng)身高為1.6米的小名站在離路燈1.6的D處時(shí),他測(cè)得自己在路燈下的影長DE與身高CD相等,當(dāng)小明繼續(xù)沿直線BD往前走到E點(diǎn)時(shí),畫出此時(shí)小明的影子,并計(jì)算此時(shí)小明的影長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從A,B向甲、乙兩地運(yùn)送蔬菜,A,B兩個(gè)蔬菜市場(chǎng)各有蔬菜14噸,其中甲地需要蔬菜15噸,乙地需要蔬菜13噸,從A到甲地運(yùn)費(fèi)50元/噸,到乙地30元/噸;從B地到甲運(yùn)費(fèi)60元/噸,到乙地45元/噸.

(1)設(shè)A地到甲地運(yùn)送蔬菜x噸,請(qǐng)完成下表:

運(yùn)往甲地(單位:噸)

運(yùn)往乙地(單位:噸)

A

x

B

(2)設(shè)總運(yùn)費(fèi)為W元,請(qǐng)寫出W與x的函數(shù)關(guān)系式

(3)怎樣調(diào)運(yùn)蔬菜才能使運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫推理理由

如圖,已知ADBCD,EFBCF,AD平分∠BAC.將∠E=1的過程填寫完整.

解:解:∵ADBC, EFBC( 已知

∴∠ADC=EFC= 90°( 垂直的意義

AD//EF

∴∠1=

E=

又∵AD平分∠BAC(已知

=

∴∠1=E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程

;

;

如果方程與方程的解相同,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),Bx軸上,四邊形OACB為平行四邊形,且∠AOB=60°,反比例函數(shù)(k>0)在第一象限內(nèi)過點(diǎn)A,且與BC交于點(diǎn)F.(1)若OA=10,求反比例函數(shù)的解析式;

(2)若FBC的中點(diǎn),且SAOF=24,求OA長及點(diǎn)C坐標(biāo);

(3)在(2)的條件下,過點(diǎn)FEFOBOA于點(diǎn)E(如圖2),若點(diǎn)P是直線EF上一個(gè)動(dòng)點(diǎn),連結(jié),PA,PO,問是否存在點(diǎn)P,使得以P,A,O三點(diǎn)構(gòu)成的三角形是直角三角形?若存在,請(qǐng)指出這樣的P點(diǎn)有幾個(gè),并直接寫出其中二個(gè)P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明了理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D、EAB上,且D、E分別是AC、BC的垂直平分線上一點(diǎn);若△CDE的周長為4,AB的長為___________;若∠ACB=100°,∠DCE=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D、EBC邊上的點(diǎn),連接AD,AE,以△ADE的邊AE所在直線為對(duì)稱軸作△ADE的軸對(duì)稱圖形△AD′E,連接D′C,若BD=CD′;

(1)求證:△ABD≌△ACD′;

(2)若∠BAC=120°,求∠DAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們不妨將橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點(diǎn)稱之為“中國結(jié)”.
(1)求函數(shù)y= x+2的圖象上所有“中國結(jié)”的坐標(biāo);
(2)若函數(shù)y= (k≠0,k為常數(shù))的圖象上有且只有兩個(gè)“中國結(jié)”,試求出常數(shù)k的值與相應(yīng)“中國結(jié)”的坐標(biāo);
(3)若二次函數(shù)y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k為常數(shù))的圖象與x軸相交得到兩個(gè)不同的“中國結(jié)”,試問該函數(shù)的圖象與x軸所圍成的平面圖形中(含邊界),一共包含有多少個(gè)“中國結(jié)”?

查看答案和解析>>

同步練習(xí)冊(cè)答案