如圖,A、B、C三點(diǎn)在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊△ABC和等邊△BCE,連接AE交BD于點(diǎn)M,連接CD交BE于點(diǎn)N,連接MN得△BMN,試判斷△BMN的形狀,并說明理由.

解:△BMN為等邊三角形.理由如下:
∵等邊△ABD、等邊△BCE,
∴∠ABD=∠CBE=60°,
∴∠ABD+∠DBE=∠EBC+∠DBE,
∴∠ABE=∠DBC,
∵AB=DB,BE=CB,
∴△ABE≌△DBC(SAS),
∴∠CDB=∠BAE,
∵∠DBE=180°-60°-60°=60°=∠ABD,
在△ABM和△DBN中,
∴△ABM≌△DBN,
∴BM=BN,
∵∠DBE=60°,
∴△BMN是等邊三角形.
∴BD∥CE,
同理可證AD∥BE,
即可得△BCN∽△ACD,△ABM∽△ACE,
==,
∵BC=CE,AD=AB,
∴BM=BN,
又∵∠MBN=180°-∠ABD-∠EBC=60°,
∴△BMN為等邊三角形.
分析:首先證明△ABE≌△DBC,可得到能使△ABM≌△DBN的條件,即可求得BM=BN,根據(jù)∠MBN=60°即可求得△BMN為等邊三角形.
點(diǎn)評(píng):本題考查了全等三角形的判定,等邊三角形的判定,本題中求得BM=BN是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,A、C、E三點(diǎn)在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,A、Q、R三點(diǎn)在一條直線上,S為直線外一點(diǎn),∠AQS=136°,∠QRS=64°,則∠QSR=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A,B,C三點(diǎn)在同一平面內(nèi),從山腳纜車站A測(cè)得山頂C的仰角為45°,測(cè)得另一纜精英家教網(wǎng)車站B的仰角為30°,AB間纜繩長(zhǎng)500米(自然彎曲忽略不計(jì)).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達(dá)纜車站B,從纜車站B測(cè)得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B、C三點(diǎn)在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A,O,B三點(diǎn)在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關(guān)系?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案