【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,的半徑為上一動點.

1)求點,的坐標(biāo)?

2)是否存在點,使得為直角三角形?若存在,求出點的坐標(biāo):若不存在,請說明理由.

【答案】1,;(2,或;

【解析】

1)在拋物線解析式中令y0可求得B點坐標(biāo),令x0可求得C點坐標(biāo);

2)①當(dāng)PB與⊙相切時,PBC為直角三角形,根據(jù)勾股定理得到BC5,,過軸于,軸于,易得,四邊形是矩形,根據(jù)相似三角形的性質(zhì)得到,設(shè),,得到BE3x,CF2x4,于是得到,,求得,過軸于,軸于,同理求得;②當(dāng)BCPC時,PBC為直角三角形,過軸于,易得,根據(jù)相似三角形的性質(zhì)求出,即可得到,同理可得

即可得到結(jié)論;

1)在中,令,解得:,令,得,

,;

2)存在點,使得為直角三角形,

①當(dāng)相切時,為直角三角形,如圖(2,連接,

,,

,

,

,

軸于,軸于,易得,四邊形是矩形,

,

設(shè),,

,,

,

,

,,

;

軸于,軸于,同理求得;

②當(dāng)時,為直角三角形,過軸于,如圖(2,易得,

,

,

;

同理可得:;

綜上所述:點的坐標(biāo)為:,或

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,AC=3,BC=4,則線段CD的長等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD的邊CD上一點,把ADE沿AE對折,使點D恰好落在BC邊上的F點處.已知折痕AE=10,且CECF=43,那么該矩形的周長為(

A.48B.64C.92D.96

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,直線 l x 軸交于點 A-2,0),與 y 軸交于點 B.雙曲線與直線 l 交于 P,Q 兩點,其中點 P 的縱坐標(biāo)大于點 Q 的縱坐標(biāo).

1)求點 B 的坐標(biāo);

2)當(dāng)點 P 的橫坐標(biāo)為 2 時,求 k 的值;

3)連接 PO,記POB 的面積為 S,若 ,直接寫出 k 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB90°ACBC,點GAC中點,連結(jié)BG,CEBGF,交ABE,連接GE,點HAB中點,連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB10,則BF4;(4FH平分∠BFE;(5SBGC3SCGE.其中正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年5月31日是第26個“世界無煙日”,校學(xué)生會書記小明同學(xué)就“戒煙方式”的了解程度對本校九年級學(xué)生進(jìn)行了一次隨機問卷調(diào)查,如圖是他采集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖(A:了解較多,B:不了解,C:了解一點,D:非常了解).請你根據(jù)圖中提供的信息解答以下問題:

(1)在扇形統(tǒng)計圖中的橫線上填寫缺失的數(shù)據(jù),并把條形統(tǒng)計圖補充完整.

(2)2013年該初中九年級共有學(xué)生400人,按此調(diào)查,可以估計2013年該初中九年級學(xué)生中對戒煙方式“了解較多”以上的學(xué)生約有多少人?

(3)在問卷調(diào)查中,選擇“A”的是1名男生,1名女生,選擇“D”的有4人且有2男2女.校學(xué)生會要從選擇“A、D”的問卷中,分別抽一名學(xué)生參加活動,請你用列表法或樹狀圖求出恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線yx+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點POA上一動點,PCPD值最小時點P的坐標(biāo)為.

A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,,設(shè)

1)如圖1,當(dāng)點內(nèi),

①若,求的度數(shù);

小明同學(xué)通過分析已知條件發(fā)現(xiàn):是頂角為的等腰三角形,且,從而容易聯(lián)想到構(gòu)造一個頂角為的等腰三角形.于是,他過點,且,連接,發(fā)現(xiàn)兩個不同的三角形全等:_____________再利用全等三角形及等腰三角形的相關(guān)知識可求出的度數(shù)

請利用小王同學(xué)分析的思路,通過計算求得的度數(shù)為_____;

②小王在①的基礎(chǔ)上進(jìn)一步進(jìn)行探索,發(fā)現(xiàn)之間存在一種特殊的等量關(guān)系,請寫出這個等量關(guān)系,并加以證明.

2)如圖2,點外,那么之間的數(shù)量關(guān)系是否改變?若改變,請直接寫出它們的數(shù)量關(guān)系;若不變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,把沿折疊,點的對應(yīng)點為,連接,使平分,若,則點是(

A.的內(nèi)心B.的外心C.的內(nèi)心D.的外心

查看答案和解析>>

同步練習(xí)冊答案