【題目】如圖,已知點A的坐標為(a4)(其中a<-3),射線OA與反比例函數(shù)的圖象交于點P,點B,C分別在函數(shù)的圖象上,且ABx軸,ACy軸,連結BOCOBPCP

1)當a=-6,求線段AC的長;

2)當AB=BO時,求點A的坐標;

3)求證:

【答案】1;(2;(3)見解析

【解析】

1)當時,由于軸,所以點的橫坐標也為-6,將點的橫坐標代入反比例函數(shù)解析式即可求得點的坐標,利用兩點間的距離公式即可求得的長;

2)根據軸.可以得到點和點的縱坐標相同,由此根據反比例函數(shù)解析式即可求得點的坐標,所以的長度可以求出,再結合,求出點的坐標;

3)分別延長軸于點,延長軸于點,根據軸,軸,可以證得四邊形為矩形,所以,而根據反比例函數(shù)的性質可得,所以,利用面積關系即可得到,從而得到證明;

解:(1)∵軸,

∴點的橫坐標相等.

∴點的坐標

2)∵軸,

∴點、的縱坐標相等,

∴點的坐標

∴點

3)延長軸于點,延長軸于點,連接

軸,軸,

∴四邊形為平行四邊形.

又∵,

∴平行四邊形為矩形.

又∵,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學校數(shù)學興趣小組做了如下探索:根據光的反射定律,利用一面鏡子和一根皮尺,設計如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關系圖象如圖所示,根據圖中提供的信息,有下列說法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時;

3)乙比甲晚出發(fā)了0.5小時;

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時到達目的地

其中符合圖象描述的說法有(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為的正方形繞點B逆時針旋轉30°,那么圖中點M的坐標為( 。

A.1B.1C.D.,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A50~60;B60~70;C70~80;D80~90;E90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.

(1)抽取學生的總人數(shù)是   人,扇形C的圓心角是   °;

(2)補全頻數(shù)直方圖;

(3)該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB切⊙O于A.B,點C在AB上,DE切⊙O于C,交PA、PB于D.E,已知PO=5cm,⊙O的半徑為3cm,則△PDE的周長是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中,平分,交于點F,,交,,則=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點A4n),與x軸相交于點B

1)填空:n的值為 ,k的值為

2)以AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標;

3)觀察反比函數(shù)y=的圖象,當y≥-2時,請直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級學生小剛是一個喜歡看書的好學生,他在學習完第二十四章圓后,在家里突然看到爸爸的初中數(shù)學書上居然還有一個相交弦定理(圓內的兩條相交弦,被交點分成的兩條線段長的積相等),非常好奇,仔細閱讀原來就是:PAPB=PCPD,小剛很想知道是如何證明的,可異證明部分污損看不清了,只看到輔助線的做法,分別連結AC、BD.聰明的你一定能幫他證出,請在圖1中做出輔助線,并寫出詳細的證明過程.

小剛又看到一道課后習題,如圖2,AB是⊙O弦,P是AB上一點,AB=10cm,PA=4cm,OP=5cm,求⊙O的半徑,愁壞了小剛,樂于助人的你肯定會幫助他,請寫出詳細的證明過程.

查看答案和解析>>

同步練習冊答案