【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖,回答下列問題:

(1)本次調(diào)查學生共 人,a= ,并將條形圖補充完整;

(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?

(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.

【答案】(1300;10;(2)800人;(3)

【解析】

試題分析:

試題解析:(1)120÷40%=300,

a%=1﹣40%﹣30%﹣20%=10%,

a=10,

10%×300=30,

圖形如下:

(2)2000×40%=800(人),

答:估計該校選擇“跑步”這種活動的學生約有800人;

(3)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結(jié)果數(shù)為2,

所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】化簡9a5a的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在O中,直徑CD垂直于不過圓心O的弦AB,垂足為點N,連接AC,點E在AB上,且AE=CE

(1)求證:AC2=AEAB;

(2)過點B作O的切線交EC的延長線于點P,試判斷PB與PE是否相等,并說明理由;

(3)設O半徑為4,點N為OC中點,點Q在O上,求線段PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“節(jié)能環(huán)保,低碳生活”是我們倡導的一種生活方式.某家電商場計劃用12萬元購進節(jié)能型電視機、洗衣機和空調(diào)共40臺.三種家電的進價及售價如表所示:

種類

進價(元/臺)

售價(元/臺)

電視機

5000

5480

洗衣機

2000

2280

空 調(diào)

2500

2800


(1)在不超出現(xiàn)有資金的前提下,若購進電視機的數(shù)量和洗衣機的數(shù)量相同,空調(diào)的數(shù)量不超過電視機的數(shù)量的三倍.請問商場有哪幾種進貨方案?
(2)在“2016年消費促進月”促銷活動期間,商家針對這三種節(jié)能型產(chǎn)品推出“現(xiàn)金每購1000元送50元家電消費券一張、多買多送”的活動.在(1)的條件下,若三種電器在活動期間全部售出,商家預計最多送出消費券多少張?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)放假期間,小明和小華準備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點都被選中的可能性相同.

(1)小明選擇去蜀南竹海旅游的概率為

(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E、F在四邊形ABCD的對角線延長線上,AE=CF,DE∥BF,∠1=∠2.

(1)求證:△AED≌△CFB;
(2)若AD⊥CD,四邊形ABCD是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系內(nèi)一點P(﹣2,3)關(guān)于原點對稱的點的坐標是(
A.(3,﹣2)
B.(2,3)
C.(﹣2,﹣3)
D.(2,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的方程mx2﹣2x+1=0有實數(shù)解,則m需滿足

查看答案和解析>>

同步練習冊答案