【題目】把幾個(gè)數(shù)用大括號(hào)括起來,中間用逗號(hào)斷開,如:{1,2,-3},{-2,7,,19},我們稱之為集合,其中的數(shù)稱為集合的元素.如果一個(gè)集合滿足:當(dāng)有理數(shù)a是集合的元素時(shí),有理數(shù)5-a也必是這個(gè)集合的元素,這樣的集合我們稱為好的集合.例如集合{5,0}就是一個(gè)好的集合.

(1)請(qǐng)你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?

(2)請(qǐng)你再寫出兩個(gè)好的集合(不得與上面出現(xiàn)過的集合重復(fù));

(3)寫出所有好的集合中,元素個(gè)數(shù)最少的集合.

【答案】 (1){1,2}不是好的集合,{-2,1,2.5,4,7}是好的集合;(2)答案不唯一,如{8,-3};{8,2.5,-3};(3)元素個(gè)數(shù)最少的好的集合是{2.5}.

【解析】

試題(1)根據(jù)好集合的定義:a,5-a都是這個(gè)集合的元素檢驗(yàn)即可;(2)滿足好集合的條件即可(3)元素個(gè)數(shù)最少的集合即只有一個(gè)數(shù),所以a=5-a,所以a=25

試題解析:

1)因?yàn)?/span>5-1=4,5-2=3,4,3不在集合{1,2}中,所以 {1,2}不是好集合

{-2,125,47}好集合;(2分)

2)答案不唯一,如{2,31,4}、{2510,﹣5};滿足好集合的條件即可;(2分)

3{25} (1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個(gè)小正方形的邊長均為1個(gè)單位長度.已知A(1,1)、B(3,4)和C(4,2).

(1)在圖中標(biāo)出點(diǎn)A、B、C.

(2)將點(diǎn)C向下平移3個(gè)單位到D點(diǎn),將點(diǎn)A先向左平移3個(gè)單位,再向下平移1個(gè)單位到E點(diǎn),在圖中標(biāo)出D點(diǎn)和E點(diǎn).

(3)求△EBD的面積S△EBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩臺(tái)智能機(jī)器人從同一地點(diǎn)P出發(fā),沿著筆直的路線行走了450cm到點(diǎn)Q.甲比乙先出發(fā),乙出發(fā)一段時(shí)間后速度提高為原來的2倍.甲勻速走完全程.兩機(jī)器人行走的路程y(cm)與時(shí)間x(s)之間的函數(shù)圖象如圖所示.根據(jù)圖象所提供的信息解答下列問題:
(1)乙比甲晚出發(fā)秒,乙提速前的速度是每秒cm,t=;
(2)當(dāng)x為何值時(shí),乙追上了甲?
(3)若兩臺(tái)機(jī)器人到達(dá)終點(diǎn)Q后迅速折返,并保持折返前的速度繼續(xù)勻速行走返回到點(diǎn)P,乙比甲早到多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清清從家步行到公交車站臺(tái),等公交車去學(xué)校.下公交車后又步行了一段路程才到學(xué)校. 圖中的折線表示清清的行程s()與所花時(shí)間t ()之間的函數(shù)關(guān)系. 下列說法錯(cuò)誤的是(

A. 清清等公交車時(shí)間為3分鐘 B. 清清步行的速度是80/

C. 公交車的速度是500/ D. 清清全程的平均速度為290/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若方程組 的解x,y滿足0<x+y<1,則k的取值范圍是(
A.﹣4<k<0
B.﹣1<k<0
C.0<k<8
D.k>﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)(-)-(+);         (2)(+3.7)-(+6.8);

(3)(-16)-(-10); (4)3.36-4.16.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏上午800從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小敏離家的路程y(米)和所經(jīng)過的時(shí)間x(分)之間的函數(shù)圖象如圖所示.請(qǐng)根據(jù)圖象回答下列問題:

1)小敏去超市途中的速度是多少?在超市逗留了多少時(shí)間?

2)小敏幾點(diǎn)幾分返回到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABDACE都是等邊三角形,

1)求證:ABE≌△ADC;

2)若∠ACD=15°,求∠AEB的度數(shù);

3)如圖2,當(dāng)ABDACE的位置發(fā)生變化,使C、E、D三點(diǎn)在一條直線上,求證:ACBE

查看答案和解析>>

同步練習(xí)冊(cè)答案