如圖,過(guò)矩形ABCD(AD>AB)的對(duì)角線AC的中點(diǎn)O作AC的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過(guò)點(diǎn)E作AD的垂線交AC于點(diǎn)P,求證:2AE2=AC•AP.

證明:(1)由已知可知:EF⊥AC,AO=CO,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中,

∴△AOE≌△COF(AAS),
∴EO=FO,
∴四邊形AFCE是平行四邊形,
∴四邊形AFCE是菱形;

(2)∵∠AEP=∠AOE=90°,∠EAP=∠OAE,
∴△AOE∽△AEP,

∴AE2=AO•AP,
又AC=2AO,
∴2AE2=AC•AP.
分析:(1)由過(guò)矩形ABCD(AD>AB)的對(duì)角線AC的中點(diǎn)O作AC的垂直平分線EF,易證得△AOE≌△COF,即可得EO=FO,則可證得四邊形AFCE是平行四邊形,又由EF⊥AC,可得四邊形AFCE是菱形;
(2)由∠AEP=∠AOE=90°,∠EAP=∠OAE,可證得△AOE∽△AEP,又由相似三角形的對(duì)應(yīng)邊成比例,即可證得2AE2=AC•AP.
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、矩形的性質(zhì)、菱形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,過(guò)矩形ABCD的四個(gè)頂點(diǎn)作對(duì)角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,過(guò)矩形ABCD的四個(gè)頂點(diǎn)作對(duì)角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為
菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,過(guò)矩形ABCD的對(duì)角線BD上一點(diǎn)K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,過(guò)矩形ABCD的對(duì)角線AC的中點(diǎn)O作EF⊥AC交AD于E,交BC于F,連接AF、EC.
(1)試判斷四邊形AFCE的形狀,并證明你的結(jié)論;
(2)若CD=4,BC=8,求S四邊形AFCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•肇慶二模)如圖,過(guò)矩形ABCD(AD>AB)的對(duì)角線AC的中點(diǎn)O作AC的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過(guò)點(diǎn)E作AD的垂線交AC于點(diǎn)P,求證:2AE2=AC•AP.

查看答案和解析>>

同步練習(xí)冊(cè)答案