【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是
(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)是
(3)請補全條形統(tǒng)計圖;
(4)若該市約有80萬人,請你估計其中將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).

【答案】
(1)1000
(2)54°
(3)解:“報紙”的人數(shù)為:1000×10%=100.

補全圖形如圖所示:


(4)解:估計將“電腦和手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù)為:

80×(26%+40%)=80×66%=52.8(萬人)


【解析】解:(1)這次接受調(diào)查的市民總?cè)藬?shù)是:260÷26%=1000;(2)扇形統(tǒng)計圖中,“電視”所對應(yīng)的圓心角的度數(shù)為: (1﹣40%﹣26%﹣9%﹣10%)×360°=54°;
(1)根據(jù)“電腦上網(wǎng)”的人數(shù)和所占的百分比求出總?cè)藬?shù);(2)用“電視”所占的百分比乘以360°,即可得出答案;(3)用總?cè)藬?shù)乘以“報紙”所占百分比,求出“報紙”的人數(shù),從而補全統(tǒng)計圖;(4)用全市的總?cè)藬?shù)乘以“電腦和手機上網(wǎng)”所占的百分比,即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A.過點P(1,m)作直線PM⊥x軸于點M,交拋物線于點B,記點B關(guān)于拋物線對稱軸的對稱點為C(點B,點C不重合).連接CB,CP.

(1)當m=3時,求點A的坐標及BC的長;
(2)當m>1時,連接CA,問m為何值時CA⊥CP?
(3)當m>1時過點P作PE⊥PC且PE=PC,問是否存在m,使得點E落在坐標軸上?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點E坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y= 上,第二象限的點B在反比例函數(shù)y= 上,且OA⊥OB,tanA= ,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:AB=AC;
(2)若AD=2 ,∠DAC=30°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點M(cos30°,sin30°)關(guān)于原點中心對稱的點的坐標是(
A.( ,
B.(﹣ ,﹣
C.(﹣ ,
D.(﹣ ,﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標系中,矩形ABCD關(guān)于y軸對稱,點A,D在x軸上,BC交y軸于點F,E是OF的中點,拋物線y=ax2+bx+c經(jīng)過B,E,C三點,已知點B(﹣2,﹣2),解答下列問題:

(1)填空:a= , b= , c=
(2)如圖2,這P是上述拋物線上一點,連接PF并延長交拋物線于另外一點Q,PM⊥x軸于M,QN⊥x軸于N.
①求證:PM+QN=PQ;
②若PQ=m,S四邊形PMNQ= m2 , 求直線PQ對應(yīng)的一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,M為CD中點,分別以點B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點P.若∠PMC=110°,則∠BPC的度數(shù)為(
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

同步練習(xí)冊答案