如圖①,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點O。

(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖②,P是線段BC上一動點(不與點B、C重合),連接PO并延長交線段AB于點Q,QR⊥BD,垂足為點R。四邊形PQED的面積是否隨點P的運動而發(fā)生變化?若變化,請說明理由;若不變,求出四邊形PQED的面積。

(1)菱形
(2)24解析:
解:(1)四邊形ABCE是菱形。證明如下:
  ∵△ECD是由△ABC沿BC平移得到的,∴EC∥AB,且EC=AB,
   ∴四邊形ABCE是平行四邊形.
  又∵AB=BC,∴四邊形ABCE是菱形.
(2)四邊形PQED的面積不發(fā)生變化,理由如下:
  ∵ABCE是菱形,∴AC⊥BE,OC=AC=3.
  ∵BC=5,∴BO=4.
過A作AH⊥BD于H

  ∵S△ABC= B C×AH=AC×BO,即×5×AH=×6×4,∴AH=.
  由菱形的對稱性知,△PBO≌△QEO,∴BP=QE.
 ∴S四邊形ABCD=(QE+PD)×QR=(BP+PD)×AH=BD×AH =×10×=24
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當∠BAC=90°時,求證:
PE
CE
=
1
2
;
(3)如圖2,當PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案