【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(2)解直角三角形求出BC=2.AB=DC=2,連接OE,交CD于點(diǎn)F,根據(jù)菱形的性質(zhì)得出F為CD中點(diǎn),求出OF=BC=1,求出OE=2OF=2,求出菱形的面積即可.
證明:,,
四邊形OCED是平行四邊形,
矩形ABCD,,,,
,
四邊形OCED是菱形;
在矩形ABCD中,,,,
,
,
連接OE,交CD于點(diǎn)F,
四邊形OCED為菱形,
為CD中點(diǎn),
為BD中點(diǎn),
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在求1+3+32+33+34+35+36+37+38的值時(shí),李敏發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘3,得3S=3+32+33+34+35+36+37+38+39②
②-①得,3S-S=39-1,即2S=39-1,
所以S=.
得出答案后,愛動(dòng)腦筋的張紅想:如果把“3”換成字母a(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2 017的值?如能求出,其正確答案是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)共有500名學(xué)生,團(tuán)委準(zhǔn)備調(diào)查他們對(duì)“低碳”知識(shí)的了解程度,
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:
方案一:調(diào)查七年級(jí)部分女生;
方案二:調(diào)查七年級(jí)部分男生;
方案三:到七年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生
請(qǐng)問其中最具有代表性的一個(gè)方案是 ;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示),請(qǐng)你根據(jù)圖中信息,將其補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校七年級(jí)約有多少名學(xué)生比較了解“低碳”知識(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
求證:無論m取何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
若a和b是這個(gè)一元二次方程的兩個(gè)根,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為參加全區(qū)的“我愛古詩詞”知識(shí)競(jìng)賽,王曉所在學(xué)校組織了一次古詩詞知識(shí)測(cè)試王曉從全體學(xué)生中隨機(jī)抽取部分同學(xué)的分?jǐn)?shù)得分取正整數(shù),滿分為100分進(jìn)行統(tǒng)計(jì)以下是根據(jù)這次測(cè)試成績制作的進(jìn)行統(tǒng)計(jì),以下是根據(jù)這次測(cè)試成績制作的不完整的頻率分布表和頻率分布直方圖請(qǐng)根據(jù)以上頻率分布表和布直方圖,回答下列問題:
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 9 | ||
2 | m | b | |
3 | 21 | ||
4 | a | ||
5 | 2 | n |
(1)分別求出a、b、m、n的值;寫出計(jì)算過程
(2)老師說:“王曉的測(cè)試成績是被抽取的同學(xué)成績的中位數(shù)”,那么王曉的測(cè)試成績?cè)谑裁捶秶鷥?nèi)?
(3)得分在的為“優(yōu)秀”,若王曉所在學(xué)校共有600名學(xué)生,從本次比賽選取得分為“優(yōu)秀”的學(xué)生參加區(qū)賽,請(qǐng)問共有多少名學(xué)生被選拔參加區(qū)賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,AC≠BC.
(1)請(qǐng)用尺規(guī)作圖(不寫作法,保留作圖痕跡).
①作∠B的角平分線,與AC相交于點(diǎn)D;
②以點(diǎn)B為圓心、BC為半徑畫弧交AB于點(diǎn)E,連接DE.
(2)根據(jù)(1)所作的圖形,寫出一對(duì)全等三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則Sn的值為 . (用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com