【題目】如圖,在△ABC中,已知∠ABC=30°,點(diǎn)D在BC上,點(diǎn)E在AC上,∠BAD=∠EBC,AD交BE于F.
(1)求∠BFD的度數(shù);
(2)若EG∥AD交BC于G,EH⊥BE交BC于H,求∠HEG的度數(shù).
【答案】(1)30°;(2)60°.
【解析】
試題分析:(1)先根據(jù)∠ABC=30°,∠BAD=∠EBC可知,∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=30°,再根據(jù)三角形外角的性質(zhì)即可得出結(jié)論;
(2)先根據(jù)EG∥AD,∠BFD=30°可知∠BEG=30°,再根據(jù)EH⊥BE可知∠BEH=90°,故可求出∠HEG的度數(shù).
試題解析:(1)∵∠ABC=30°,∠BAD=∠EBC,
∴∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=30°,
∵∠BFD是△ABF的外角,
∴∠BFD=∠BAD+∠ABF=30°;
(2)∵EG∥AD,∠BFD=30°,
∴∠BEG=∠BFD=30°,
∵EH⊥BE,
∴∠BEH=90°,
∴∠HEG=∠BEH-∠BDG=90°-30°=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四個(gè)數(shù)﹣3.14,0,1,2中為負(fù)數(shù)的是( ).
A.﹣3.14 B.0 C.1 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小李制作了一張△ABC紙片,點(diǎn)D、E分別在邊AB、AC上,現(xiàn)將△ABC沿著DE折疊壓平,使點(diǎn)A落在點(diǎn)A′位置.若∠A=75°,則∠1+∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,頂點(diǎn)A、C分別在x軸、y軸的正半軸,拋物線y=﹣x2+bx+c經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC、BD、CD.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在外來(lái)文化的滲透和商家的炒作下,過(guò)洋節(jié)儼然成為現(xiàn)今青少年一種時(shí)尚,圣誕節(jié)前期,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為每個(gè)2元的蘋(píng)果的銷(xiāo)售情況,請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義兩種新變換:①f(a,b)=(a,-b),如f(1,2)=(1,-2);②g(a,b)=(b,a),如g(1,2)=(2,1).據(jù)此得g(f(5,-6))=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】∠1與∠2是兩條直線被第三條直線所截的同位角,若∠1=50°,則∠2為( )
A. 50° B. 130° C. 50°或130° D. 不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com