如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2﹣CF2取最大值時,求tan∠DCF的值.
解:(1)∵α=60°,BC=10,∴sinα=,即sin60°=,解得CE=。
(2)①存在k=3,使得∠EFD=k∠AEF。理由如下:
連接CF并延長交BA的延長線于點(diǎn)G,
∵F為AD的中點(diǎn),∴AF=FD。
在平行四邊形ABCD中,AB∥CD,∴∠G=∠DCF。
在△AFG和△CFD中,
∵∠G=∠DCF, ∠G=∠DCF,AF=FD,
∴△AFG≌△CFD(AAS)!郈F=GF,AG=CD。
∵CE⊥AB,∴EF=GF。∴∠AEF=∠G。
∵AB=5,BC=10,點(diǎn)F是AD的中點(diǎn),∴AG=5,AF=AD=BC=5!郃G=AF。
∴∠AFG=∠G。
在△AFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG,∴∠CFD=∠AEF。
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整數(shù)k=3,使得∠EFD=3∠AEF。
②設(shè)BE=x,∵AG=CD=AB=5,∴EG=AE+AG=5﹣x+5=10﹣x,
在Rt△BCE中,CE2=BC2﹣BE2=100﹣x2。
在Rt△CEG中,CG2=EG2+CE2=(10﹣x)2+100﹣x2=200﹣20x。
∵CF=GF(①中已證),∴CF2=(CG)2=CG2=(200﹣20x)=50﹣5x。
∴CE2﹣CF2=100﹣x2﹣50+5x=﹣x2+5x+50=﹣(x﹣)2+50+。
∴當(dāng)x=,即點(diǎn)E是AB的中點(diǎn)時,CE2﹣CF2取最大值。
此時,EG=10﹣x=10﹣,CE=,
∴。
【解析】銳角三角函數(shù)定義,特殊角的三角函數(shù)值,平行四邊形的性質(zhì),對頂角的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線性質(zhì),等腰三角形的性質(zhì),二次函數(shù)的最值,勾股定理。
(1)利用60°角的正弦值列式計算即可得解。
(2)①連接CF并延長交BA的延長線于點(diǎn)G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據(jù)AB、BC的長度可得AG=AF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解。
②設(shè)BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
5 |
A、AC⊥BD |
B、四邊形ABCD是菱形 |
C、△ABO≌△CBO |
D、AC=BD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com