如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長(zhǎng)及直角梯形OABC的面積,
②當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
精英家教網(wǎng)
分析:(1)先要看分段函數(shù)所表示的意思是什么,當(dāng)0<x≤2時(shí),E在B和A之間掃過的梯形的部分是個(gè)平行四邊形,當(dāng)2<x<4時(shí),E在A點(diǎn)右側(cè),且D在O點(diǎn)左側(cè)時(shí),掃過的梯形的部分是個(gè)五邊形,當(dāng)x≥4時(shí),掃過的梯形的面積就是整個(gè)梯形的面積.
①由上面的分析可看出當(dāng)t=2時(shí),就是E、A重合的時(shí)候,那么AB=2,可根據(jù)此時(shí)梯形的平行四邊形的面積為8求出OA的長(zhǎng);而當(dāng)t=4時(shí),就是D于O重合的部分,因此OC=4,那么梯形的面積就可以求出來了.
②根據(jù)上面的分析當(dāng)2<t<4時(shí),直角梯形OABC被直線l掃過的面積=直角梯形OABC面積一直角三角形DOE面積,然后可用t表示出OD、OE的長(zhǎng),然后根據(jù)得出的等量關(guān)系求出S、t的函數(shù)關(guān)系式;
(2)要分三種情況進(jìn)行討論:
①以點(diǎn)D為直角頂點(diǎn),作PP1⊥x軸
精英家教網(wǎng)
在Rt△ODE中,OE=2OD,設(shè)OD=b,OE=2b.由于Rt△ODE≌Rt△P1PD,(圖示陰影)
因此b=4,2b=8,在上面二圖中分別可得到P點(diǎn)的生標(biāo)為P(-12,4)、P(-4,4)
E點(diǎn)在0點(diǎn)與A點(diǎn)之間不可能;
②以點(diǎn)E為直角頂點(diǎn)
精英家教網(wǎng)
同理在②二圖中分別可得P點(diǎn)的生標(biāo)為P(-
8
3
,4)、P(8,4)E點(diǎn)在0點(diǎn)下方不可能.
③以點(diǎn)P為直角頂點(diǎn)
精英家教網(wǎng)
同理在③二圖中分別可得P點(diǎn)的生標(biāo)為P(-4,4)(與①情形二重合舍去)、P(4,4),
E點(diǎn)在A點(diǎn)下方不可能.
綜上可得P點(diǎn)的生標(biāo)共5個(gè)解,分別為P(-12,4)、P(-4,4)、P(-
8
3
,4)、
P(8,4)、P(4,4).
解答:精英家教網(wǎng)解:(1)①AB=2
OA=
8
2
=4,OC=4,S梯形OABC=12
②當(dāng)2<t<4時(shí),
直角梯形OABC被直線l掃過的面積=直角梯形OABC面積一直角三角形DOE面積,
∵AB∥CD,OA=4,
AE
OE
=
AF
OD
=
t-2
4-t
,
∴OE=8-2t
S=12-
1
2
(4-t)×(8-2t)=-t2+8t-4;

精英家教網(wǎng)(2)存在
P1(-12,4),P2(-4,4),P3(-
8
3
,4),P4(4,4),P5(8,4)
下面提供參考解法二:
以直角進(jìn)行分類進(jìn)行討論(分三類):
第一類如上分析中①所示圖∠P為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,0),E(0,2b)的中點(diǎn)坐標(biāo)為(-
b
2
,b)
,
直線DE的中垂線方程:y-b=-
1
2
(x+
b
2
)

令y=4得P(
3b
2
-8,4)

由已知可得
2
PE=DE即
2
×
(
3
2
b-8)
2
+(4-2b)2
=
b2+4b2

化簡(jiǎn)得3b2-32b+64=0
解得b1=8,b2=
8
3
將之代入P(
3b
2
-8,4)
∴P1=(4,4)P2(-4,4);
第二類如上分析中②所示圖∠E為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,o),E(O,2b),
直線PE的方程:y=-
1
2
x+2b
,
令y=4得P(4b-8,4).
由已知可得PE=DE即
(4b-8)2+(4-2b)2
=
b2+4b2

化簡(jiǎn)得b2=(2b-8)2
解之得,b1=4,b2=
4
3
將之代入P(4b-8,4)
∴P3=(8,4)P4(-
8
3
,4)

第三類如上分析中③所示圖∠D為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,o),E(O,2b),
直線PD的方程:y=-
1
2
(x+b),
令y=4得P(-b-8,4).
由已知可得PD=DE即
82+42
=
b2+4b2

解得b1=4,b2=-4將之代入P(-b-8,4)
∴P5=(-12,4)、P6(-4,4)、[P6(-4,4)與P2重合舍去].
綜上可得P點(diǎn)的坐標(biāo)共5個(gè)解,分別為P(-12,4)、P(-4,4)、P(-
8
3
,4)、
P(8,4)、P(4,4).
事實(shí)上,我們可以得到更一般的結(jié)論:
如果得出AB=a、OC=b、OA=h、設(shè)k=
b-a
h
,則P點(diǎn)的情形如下:
精英家教網(wǎng)
點(diǎn)評(píng):本題結(jié)合梯形,平行四邊形等知識(shí)考查了二次函數(shù)的綜合應(yīng)用,要注意的是(2)中要分直角頂點(diǎn)的不同來進(jìn)行分類討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖1所示的直角梯形,其中三邊長(zhǎng)分別為5、9、12,則原直角三角形紙片的斜邊長(zhǎng)是
26或30
26或30

(2)如圖2,P是矩形ABCD內(nèi)的任意一點(diǎn),連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:①S1+S2=S3+S4,②S2+S4=S1+S3,③若S3=2S1,則S4=2S2,④若S1=S2,則P點(diǎn)在矩形的對(duì)角線上,其中正確的結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》?碱}集(23):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長(zhǎng)及直角梯形OABC的面積,
②當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長(zhǎng)及直角梯形OABC的面積,
②當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷36(義橋?qū)嶒?yàn)學(xué)校 嚴(yán)炯炯)(解析版) 題型:解答題

(2008•義烏)如圖1所示,直角梯形OABC的頂點(diǎn)A、C分別在y軸正半軸與x軸負(fù)半軸上.過點(diǎn)B、C作直線l.將直線l平移,平移后的直線l與x軸交于點(diǎn)D,與y軸交于點(diǎn)E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
①求梯形上底AB的長(zhǎng)及直角梯形OABC的面積,
②當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(shí)(包括l與直線BC重合),在直線AB上是否存在點(diǎn)P,使△PDE為等腰直角三角形?若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案