分析:(1)先要看分段函數(shù)所表示的意思是什么,當(dāng)0<x≤2時(shí),E在B和A之間掃過的梯形的部分是個(gè)平行四邊形,當(dāng)2<x<4時(shí),E在A點(diǎn)右側(cè),且D在O點(diǎn)左側(cè)時(shí),掃過的梯形的部分是個(gè)五邊形,當(dāng)x≥4時(shí),掃過的梯形的面積就是整個(gè)梯形的面積.
①由上面的分析可看出當(dāng)t=2時(shí),就是E、A重合的時(shí)候,那么AB=2,可根據(jù)此時(shí)梯形的平行四邊形的面積為8求出OA的長(zhǎng);而當(dāng)t=4時(shí),就是D于O重合的部分,因此OC=4,那么梯形的面積就可以求出來了.
②根據(jù)上面的分析當(dāng)2<t<4時(shí),直角梯形OABC被直線l掃過的面積=直角梯形OABC面積一直角三角形DOE面積,然后可用t表示出OD、OE的長(zhǎng),然后根據(jù)得出的等量關(guān)系求出S、t的函數(shù)關(guān)系式;
(2)要分三種情況進(jìn)行討論:
①以點(diǎn)D為直角頂點(diǎn),作PP
1⊥x軸
在Rt△ODE中,OE=2OD,設(shè)OD=b,OE=2b.由于Rt△ODE≌Rt△P
1PD,(圖示陰影)
因此b=4,2b=8,在上面二圖中分別可得到P點(diǎn)的生標(biāo)為P(-12,4)、P(-4,4)
E點(diǎn)在0點(diǎn)與A點(diǎn)之間不可能;
②以點(diǎn)E為直角頂點(diǎn)
同理在②二圖中分別可得P點(diǎn)的生標(biāo)為P(-
,4)、P(8,4)E點(diǎn)在0點(diǎn)下方不可能.
③以點(diǎn)P為直角頂點(diǎn)
同理在③二圖中分別可得P點(diǎn)的生標(biāo)為P(-4,4)(與①情形二重合舍去)、P(4,4),
E點(diǎn)在A點(diǎn)下方不可能.
綜上可得P點(diǎn)的生標(biāo)共5個(gè)解,分別為P(-12,4)、P(-4,4)、P(-
,4)、
P(8,4)、P(4,4).
解答:解:(1)①AB=2
OA=
=4,OC=4,S
梯形OABC=12
②當(dāng)2<t<4時(shí),
直角梯形OABC被直線l掃過的面積=直角梯形OABC面積一直角三角形DOE面積,
∵AB∥CD,OA=4,
∴
=
=
,
∴OE=8-2t
S=12-
(4-t)×(8-2t)=-t
2+8t-4;
(2)存在
P
1(-12,4),P
2(-4,4),P
3(-
,4),P
4(4,4),P
5(8,4)
下面提供參考解法二:
以直角進(jìn)行分類進(jìn)行討論(分三類):
第一類如上分析中①所示圖∠P為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,0),E(0,2b)的中點(diǎn)坐標(biāo)為
(-,b),
直線DE的中垂線方程:y-b=-
(x+),
令y=4得
P(-8,4).
由已知可得
PE=DE即
×=化簡(jiǎn)得3b
2-32b+64=0
解得b
1=8,b
2=
將之代入P(
-8,4)
∴P
1=(4,4)P
2(-4,4);
第二類如上分析中②所示圖∠E為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,o),E(O,2b),
直線PE的方程:y=-
x+2b,
令y=4得P(4b-8,4).
由已知可得PE=DE即
=化簡(jiǎn)得b
2=(2b-8)
2
解之得,b
1=4,b
2=
將之代入P(4b-8,4)
∴P
3=(8,4)
P4(-,4)第三類如上分析中③所示圖∠D為直角:
設(shè)直線DE:y=2x+2b,此時(shí)D(-b,o),E(O,2b),
直線PD的方程:y=-
(x+b),
令y=4得P(-b-8,4).
由已知可得PD=DE即
=解得b
1=4,b
2=-4將之代入P(-b-8,4)
∴P
5=(-12,4)、P
6(-4,4)、[P
6(-4,4)與P
2重合舍去].
綜上可得P點(diǎn)的坐標(biāo)共5個(gè)解,分別為P(-12,4)、P(-4,4)、P(-
,4)、
P(8,4)、P(4,4).
事實(shí)上,我們可以得到更一般的結(jié)論:
如果得出AB=a、OC=b、OA=h、設(shè)
k=,則P點(diǎn)的情形如下: