【題目】如圖,把六張大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊無縫隙的放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為,寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長(zhǎng)之和是( )
A.B.C.D.
【答案】B
【解析】
設(shè)圖①小長(zhǎng)方形的長(zhǎng)為a,寬為b,由圖②表示出上面與下面兩個(gè)長(zhǎng)方形的周長(zhǎng),求出之和,根據(jù)題意得出a+3b=m,代入計(jì)算即可.
解:設(shè)圖①小長(zhǎng)方形的長(zhǎng)為a,寬為b,
上面的長(zhǎng)方形的周長(zhǎng):2(m-3b+n-3b)
下面的長(zhǎng)方形的周長(zhǎng):2(n-a+m-a)
周長(zhǎng)之和為:2m+2n-12b+2n+2m-4a=4m+4n-12b-4a
由圖②得出:a+3b=m
代入可得出:4m+4n-12b-4a=4n
故答案為:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 4臺(tái) | 1200元 |
第二周 | 5臺(tái) | 6臺(tái) | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以OA為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,E為平面內(nèi)任意一點(diǎn),連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DG,連接EC,AG.
(1)當(dāng)點(diǎn)E在正方形ABCD內(nèi)部時(shí),
①根據(jù)題意,在圖1中補(bǔ)全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.
(2)當(dāng)點(diǎn)B,D,G在一條直線時(shí),若AD=4,DG=,求CE的長(zhǎng).(可在備用圖中畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊AB、BC、CA分別為邊,在BC的同側(cè)作等邊△ABD、等邊△BCE、等邊△CAE,求證:四邊形ADEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解題:據(jù)專家預(yù)測(cè)今年受厄爾尼諾現(xiàn)象影響,我國(guó)大部分地區(qū)可能遇到洪澇災(zāi)害.進(jìn)入防汛期前,某地對(duì)河堤進(jìn)行了加固.該地駐軍在河堤加固的工程中出色完成了任務(wù).這是記者與駐軍工程指揮官的一段對(duì)話:
“你們是用9天完成4800米長(zhǎng)的大壩加固任務(wù)的”?
“我們加固600米后采用新的加固模式,這樣每天加固長(zhǎng)度是原來的2倍”,
通過這段對(duì)話請(qǐng)你求出該地駐軍原來每天加固的米數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在△ABC中,AB=BC,P為AB邊上一點(diǎn),連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2)APCD是否為矩形?請(qǐng)說明理由;
(3)如圖(2),F為BC中點(diǎn),連接FP,將∠AEP繞點(diǎn)E順時(shí)針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長(zhǎng)線的交點(diǎn)).猜想線段EM與EN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM//BN,∠A=600.點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)①∠ABN的度數(shù)是 ;②∵AM //BN,∴∠ACB=∠ ;
(2)求∠CBD的度數(shù);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫出它們之間的關(guān)系,并說明理由;若變化,請(qǐng)寫出變化規(guī)律.
(4)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),∠ABC的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com