【題目】如圖:在平行四邊形ABCD中,點E在BA的延長線上,且BE=AD,點F在AD上,AF=AB,求證:CF=EF.

【答案】證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB,CD=AB,
∴∠D=∠EAF,
∵BE=AD,AF=AB,
∴AE=DF,CD=AF,
在△CDF和△FAE中,
,
∴△DCF≌△AFE(SAS),
∴CF=EF.
【解析】由四邊形ABCD是平行四邊形,可得CD∥AB,CD=AB,即可證得∠D=∠EAF,又由BE=AD,AF=AB,易得AE=DF,CD=AF,然后由SAS證得△DCF≌△AFE,即可證得結(jié)論.
【考點精析】本題主要考查了平行四邊形的性質(zhì)的相關知識點,需要掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果x =2是方程x2x+k=0的一個根,則常數(shù)k的值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=6,點P是AB邊上的任意一點(點P不與點A、點B重合),過點P作PD⊥AB,交直線BC于點D,作PE⊥AC,垂足為點F.

(1)求∠APE的度數(shù);
(2)連接DE,當△PDE為等邊三角形時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市最高氣溫是33℃,最低氣溫是24℃,則該市氣溫t(℃)的變化范圍是()

A. t>33 B. t≤24 C. 24<t<33 D. 24≤t≤33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,有矩形AOBC,點A、B的坐標分別為(0,4)、(10,0),點P的坐標為(2,0),點M在線段AO上,點N在線段AC上,總有∠MPN=90 ,點M從點O運動到點A,當點M運動到A點時,點N與點C重合(如圖2)。令AM=x

(1).直接寫出點C的坐標___________;

(2)、①設MN2=y,請寫出y關于x的函數(shù)關系式,并求出y的最小值;

②連接APMN于點D,若MNA P,求x的值;

(3)、當點M在邊AO上運動時,∠PMN的大小是否發(fā)生變化?請說明理由.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(m,﹣2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,哪些適合抽樣調(diào)查?哪些適合全面調(diào)查?

(1)工廠準備對一批即將出廠的飲料中含有細菌總數(shù)的情況進行調(diào)查;

(2)小明準備對全班同學所喜愛的球類運動的情況進行調(diào)查;

(3)某農(nóng)田保護區(qū)對區(qū)內(nèi)的水稻秧苗的高度進行調(diào)查.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=2x123的頂點坐標為(

A.1,3B.(﹣1,﹣3C.(﹣1,3D.1,﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,A:B:C=2:3:2,則D=( )

A36° B.108° C.72° D.60°

查看答案和解析>>

同步練習冊答案