【題目】已知一個角的兩邊與另一個角的兩邊分別平行,請結(jié)合圖,探索這兩個角之間的關(guān)系,并說明理由.
(1)如圖①,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(2)如圖②,AB∥CD,BE∥DF,∠1與∠2的關(guān)系是 ;
證明:
(3)經(jīng)過上述證明,我們可得出結(jié)論,如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角 ;
(4)若這兩個角的兩邊分別平行,且一個角比另一個角的3倍少60°,則這兩個角分別是多少度?
【答案】(1)∠1=∠2,證明詳見解析;(2)∠1+∠2=180°,理由詳見解析;(3)相等或互補(bǔ);(4)30°,30°或60°,120°.
【解析】
1)由AB∥CD可得∠1=∠3,由BE∥DF可得∠3=∠2,即可得到結(jié)果;
(2)由AB∥CD可得∠1=∠3,由BE∥DF可得∠3+∠2=180°,即可得到結(jié)果;
(3)結(jié)合(1)(2)中得出的結(jié)論即可作出判斷.
(4)根據(jù)題示判斷出兩角互補(bǔ)或相等,列出方程求解即可.
解:(1)∠1=∠2.
證明如下:∵AB∥CD,
∴∠1=∠3,
∵BE∥DF,
∴∠2=∠3,
∴∠1=∠2;
(2)∠1+∠2=180°.
理由:∵AB∥CD,
∴∠1=∠3,
∵BE∥DF,
∴∠2+∠3=180°,
∴∠1+∠2=180°;
(3)如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ);
(4)設(shè)一個角的度數(shù)為x,則另一個角的度數(shù)為3x-60°,
當(dāng)x=3x-60°,解得x=30°,則這兩個角的度數(shù)分別為30°,30°;
當(dāng)x+3x-60°=180°,解得x=60°,則這兩個角的度數(shù)分別為60°,120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F
(1)求證:EO=FO;
(2)當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將八個邊長為1的小正方形擺放在平面直角坐標(biāo)系中,若過原點的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個單位后所得直線l′的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形ABCDE的邊長為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF)2=9+2 ;④DF2﹣DG2=7﹣2 .其中結(jié)論正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,CD⊥DA,DA⊥AB,∠1=∠2.試確定射線DF與AE的位置關(guān)系,并說明你的理由.
某同學(xué)在解決上面問題時,準(zhǔn)備三步走,請你完成他的步驟.
(1)問題的結(jié)論:DF____AE.
(2)思路要使DF_____AE,只要∠3=____.
(3)說理過程:
解:∵CD⊥DA,DA⊥AB,
∴∠CDA=∠DAB=________.( )
又∵∠1=∠2,
∴∠CDA﹣∠2=____﹣____,( )
即∠3=______,
∴DF_____AE.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m經(jīng)過A(4,0)、B(3,﹣),直線n經(jīng)過原點且與直線m相交于D,D點的橫坐標(biāo)為﹣2.
(1)求直線m、n的表達(dá)式;
(2)求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點,則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對稱軸.若一元二次方程ax2+bx+c=0的一個根x1的取值范圍是2<x1<3,則它的另一個根x2的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com