如圖,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度數(shù).

【答案】分析:首先根據(jù)三角形的內(nèi)角和定理求得∠ACB的度數(shù),再根據(jù)CE平分∠ACB求得∠ACE的度數(shù),則根據(jù)三角形的外角的性質(zhì)就可求得∠CED=∠A+∠ACE,再結(jié)合CD⊥AB,DF⊥CE就可求解.
解答:解:∵∠A=40°,∠B=72°,
∴∠ACB=180°-40°-72°=68°,
∵CE平分∠ACB,
∴∠ACE=∠BCE=34°,
∴∠CED=∠A+∠ACE=74°,
∴∠CDE=90°,DF⊥CE,
∴∠CDF+∠ECD=∠ECD+∠CED=90°,
∴∠CDF=74°.
點評:此題主要考查了三角形的內(nèi)角和定理、三角形的外角的性質(zhì)、以及角平分線定義和垂直定義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案