【題目】銳角△ABC中,BC=6,,兩動(dòng)點(diǎn)M,N分別在邊AB,AC上滑動(dòng),且MN∥BC,以MN為邊向下作正方形MPQN,設(shè)其邊長為x,正方形MPQN△ABC公共部分的面積為y(y0)

(1)△ABC中邊BC上高AD;

(2)當(dāng)x為何值時(shí),PQ恰好落在邊BC上(如圖1);

(3)當(dāng)PQ△ABC外部時(shí)(如圖2),求y關(guān)于x的函數(shù)關(guān)系式(注明x的取值范圍),并求出x為何值時(shí)y最大,最大值是多少?

【答案】14;(22.4(或);(33,6.

【解析】

1)利用三角形的面積公式容易得出△ABC中邊BC上高AD的長度.

2)因?yàn)檎叫蔚奈恢迷谧兓,但是?/span>AMN∽△ABC沒有改變,利用相似三角形對應(yīng)邊上高的比等于相似比,得出等量關(guān)系,代入解析式可得出;

3)用含x的式子表示矩形MEFN邊長,從而求出面積的表達(dá)式,配方成頂點(diǎn)式可得解.

解:(1)由BC=6,SABC=12,得AD=4;
2)當(dāng)PQ恰好落在邊BC上時(shí),
MNBC,

∴△AMN∽△ABC

;

3)設(shè)BC分別交MP,NQEF,則四邊形MEFN為矩形.
設(shè)ME=NF=h,ADMNG(如圖2GD=NF=h,AG=4-h


MNBC,

∴△AMN∽△ABC

,

,

配方得:

∴當(dāng)x=3時(shí),y有最大值,最大值是6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線上的兩個(gè)動(dòng)點(diǎn)M、N,滿足AB=MN,點(diǎn)PBC的中點(diǎn),連接AN、PM,若AB=6,則當(dāng)AN+PM取最小值時(shí),線段AN的長度為(  。

A.4B.2C.6D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的對稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣30)和(﹣4,0)之間,其部分圖象如圖所示則下列結(jié)論:4ab0;c0c3a;4a2bat2+btt為實(shí)數(shù));點(diǎn)(﹣,y1),(﹣y2),()是該拋物線上的點(diǎn),則y2y1y3,其中,正確結(jié)論的個(gè)數(shù)是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文藝復(fù)興時(shí)期,意大利藝術(shù)大師達(dá)芬奇曾研究過圓弧所圍成的許多圖形的面積問題. 如圖所示稱為達(dá)芬奇的貓眼,可看成圓與正方形的各邊均相切,切點(diǎn)分別為,所在圓的圓心為點(diǎn)(或. 若正方形的邊長為2,則圖中陰影部分的面積為(

A. B. 2C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象如圖,下列結(jié)論中正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OABCBC邊的中點(diǎn),且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣xk2+經(jīng)過點(diǎn)D(﹣10),與x軸正半軸交于點(diǎn)E,與y軸交于點(diǎn)C,過點(diǎn)CCBx軸交拋物線于點(diǎn)B.連接BDy軸于點(diǎn)F

1)求點(diǎn)E的坐標(biāo).

2)求CFB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校數(shù)學(xué)興趣小組想利用數(shù)學(xué)知識(shí)測量某座山的海拔高度,如圖,他們在山腰A處測得山頂B的仰角為45°,他們從A處沿著坡度為i=1 : 的斜坡前進(jìn)1000 m到達(dá)D處,在D處測得山頂B的仰角為58°,若點(diǎn)A處的海拔為12米,求該座山頂點(diǎn)B處的海拔高度,(結(jié)果保留整數(shù),參考數(shù)據(jù):tan 58°≈1.60,sin 58°≈0. 85cos 58°≈0.53,≈1. 732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買3個(gè)足球和2個(gè)籃球共需310元,購買2個(gè)足球和5個(gè)籃球共需500元。

(1)求購買一個(gè)足球、一個(gè)籃球各需多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需從體育用品商店一次性購買足球和籃球共96個(gè),要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個(gè)籃球?

查看答案和解析>>

同步練習(xí)冊答案