(2003•黑龍江)如圖:用8塊相同的長(zhǎng)方形地磚拼成一個(gè)矩形,則每個(gè)長(zhǎng)方形地磚的面積是( )

A.200cm2
B.300cm2
C.600cm2
D.2400cm2
【答案】分析:根據(jù)矩形的兩組對(duì)邊分別相等,可知題中有兩個(gè)等量關(guān)系:小長(zhǎng)方形的長(zhǎng)+寬=40,小長(zhǎng)方形的長(zhǎng)×2=小長(zhǎng)方形的長(zhǎng)+小長(zhǎng)方形的寬×3.根據(jù)這兩個(gè)等量關(guān)系,可列出方程組,再求解.
解答:解:設(shè)每個(gè)小長(zhǎng)方形地磚的長(zhǎng)為xcm,寬為ycm,由題意可得
,
,
解之
所以每個(gè)長(zhǎng)方形地磚的面積是300cm2
故選B.
點(diǎn)評(píng):此類題目是數(shù)形結(jié)合的題例,需仔細(xì)觀察圖形,利用方程組解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點(diǎn)M,過M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)預(yù)考題(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖南省岳陽(yáng)市岳化一中高一新生數(shù)學(xué)綜合能力測(cè)試(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標(biāo)系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長(zhǎng)分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長(zhǎng);
(2)當(dāng)BC⊥OC時(shí),求OC的長(zhǎng)及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點(diǎn)M,過M點(diǎn)作x軸的平行線,交y軸于F,交BC于D,過D點(diǎn)作y軸的平行線,交x軸于點(diǎn)E,使S矩形FOED=S梯形AOBC?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點(diǎn)的橫坐標(biāo)為1,則a+c的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案