【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“濟(jì)”、“寧”的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個(gè)球,球上的漢字剛好是“福”的概率為多少?
(2)小穎從中任取一球,記下漢字后放回袋中,然后再從中任取一球,求小穎取出的兩個(gè)球上漢字恰能組成“幸!被颉皾(jì)寧”的概率.

【答案】
(1)解:∵一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“濟(jì)”、“寧”的四個(gè)小球,除漢字不同之外,小球沒有任何區(qū)別,

∴從中任取一個(gè)球,球上的漢字剛好是“!钡母怕蕿椋


(2)解:畫樹狀圖得:

∵共有16種等可能的結(jié)果,小穎取出的兩個(gè)球上漢字恰能組成“幸!被颉皾(jì)寧”的有4種情況,

∴小穎取出的兩個(gè)球上漢字恰能組成“幸!被颉皾(jì)寧”的概率為: =


【解析】(1)由一個(gè)不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“濟(jì)”、“寧”的四個(gè)小球,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小穎取出的兩個(gè)球上漢字恰能組成“幸!被颉皾(jì)寧”的情況,再利用概率公式即可求得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用列表法與樹狀圖法的相關(guān)知識(shí)可以得到問題的答案,需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點(diǎn)D,E分別在AB,AC上,且CD與BE相交于點(diǎn)F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣安某網(wǎng)站調(diào)查,2016年網(wǎng)民們最關(guān)注的熱點(diǎn)話題分別有:消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)調(diào)查的部分相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:

根據(jù)以上信息解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)若廣安市約有900萬人口,請(qǐng)你估計(jì)最關(guān)注環(huán)保問題的人數(shù)約為多少萬人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,則抽取的兩人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求代數(shù)式( )÷ 的值,其中x=2sin60°﹣1,y=tan45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的頂點(diǎn)為P(﹣2,2),與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂點(diǎn)移動(dòng)到點(diǎn)P1(2,﹣2),那么得到的新拋物線的一般式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是(
A.函數(shù)有最小值
B.對(duì)稱軸是直線x=
C.當(dāng)x< ,y隨x的增大而減小
D.當(dāng)﹣1<x<2時(shí),y>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(Ⅱ)如圖②,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸交于點(diǎn)B.

(1)求此二次函數(shù)關(guān)系式和點(diǎn)B的坐標(biāo);
(2)在x軸的正半軸上是否存在點(diǎn)P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD于正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A,D1 , D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).

(1)求對(duì)稱中心的坐標(biāo).
(2)寫出頂點(diǎn)B,C,B1 , C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案