如圖,在平面直角坐標(biāo)系中,矩形ABCD的邊BC平行于x軸,AB=6,點(diǎn)A的橫坐標(biāo)為2,反比例函數(shù)y=
18
x
(x>0)的圖象經(jīng)過點(diǎn)A、C.
(1)求點(diǎn)A的坐標(biāo);
(2)求點(diǎn)B、D所在直線的函數(shù)關(guān)系式;
(3)若點(diǎn)P(p,-
3
2
p+12),是否存在實(shí)數(shù)p,使得S△PAB=12?若存在,請(qǐng)直接寫出所有滿足條件的p的值;若不存在,請(qǐng)說明理由.
分析:(1)把點(diǎn)A的橫坐標(biāo)代入反比例函數(shù)解析式計(jì)算即可求出點(diǎn)A的縱坐標(biāo),從而得解;
(2)先求出點(diǎn)B的縱坐標(biāo),即為點(diǎn)C的縱坐標(biāo),進(jìn)而得出D點(diǎn)坐標(biāo),再利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)根據(jù)(1)、(2)中所求A,C點(diǎn)的坐標(biāo)得出直線AC的解析式,進(jìn)而得出P點(diǎn)的位置,再利用三角形面積公式求出P的值.
解答:解:(1)∵點(diǎn)A在反比例函數(shù)y=
18
x
的圖象上,
∴y=
18
2
=9,
∴點(diǎn)A的坐標(biāo)是(2,9);

(2)∵BC平行于x軸,且AB=6,
∴點(diǎn)B縱坐標(biāo)為9-6=3,點(diǎn)C縱坐標(biāo)為3,
∴B點(diǎn)坐標(biāo)為:(2,3),
∵點(diǎn)C在反比例函數(shù)y=
18
x
的圖象上,
∴x=
18
3
=6,
∴點(diǎn)C的坐標(biāo)是(6,3),
∴D點(diǎn)坐標(biāo)為:(6,9),
設(shè)經(jīng)過點(diǎn)B、D所在直線的函數(shù)關(guān)系式為y=ax+c,
9=6a+c
3=2a+c

解得:
a=
3
2
c=0

∴B、D所在直線的函數(shù)關(guān)系式為:y=
3
2
x;

(3)設(shè)經(jīng)過點(diǎn)A、C所在直線的函數(shù)關(guān)系式為y=kx+b,
可得
9=2k+b
3=6k+b
,
解得
k=-
3
2
b=12
,
∴AC所在直線的函數(shù)關(guān)系式為y=-
3
2
x+12,
∵點(diǎn)P(p,-
3
2
p+12),
∴p在直線AC上,
∵AB=6,S△PAB=12,
∴P到AB的距離為4,
∴當(dāng)P點(diǎn)橫坐標(biāo)為:6時(shí)或-1時(shí)符合要求,
∴滿足條件的p的值為6或-1.
點(diǎn)評(píng):本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)解析式,矩形的對(duì)邊相等的性質(zhì)和三角形面積求法等知識(shí),得出P點(diǎn)的位置是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案