(2008•隨州)2008年奧運會即將在北京舉行,某中學團委會以“你最喜歡收看的奧運會比賽項目”為題,隨機調(diào)查了部分同學(每人只選一個項目).下面是根據(jù)調(diào)查結果制作的條形統(tǒng)計圖和扇形統(tǒng)計圖的一部分,請根據(jù)統(tǒng)計圖中提供的信息解答下列問題:
(1)此次隨機調(diào)查學生人數(shù)共有______名;
(2)補全條形統(tǒng)計圖(圖1),直接寫出圖2中田徑項目的圓心角度數(shù);
(3)根據(jù)以上調(diào)查,試估計該校2000名學生中,最喜歡收看田徑比賽的大約有多少人?

【答案】分析:(1)由條形圖知,喜歡籃球的人數(shù)有44人,占總體的22%,由部分可求得總體;
(2)先求得田徑項目的人數(shù),補全條形圖,再求田徑項目所對應的圓心角度數(shù)是360°×=108°;
(3)該校2000名學生中,最喜歡收看田徑比賽的大約有2000×=600人.
解答:解:(1)此次隨機調(diào)查學生人數(shù)共有44÷22%=200名;(2分)

(2)根據(jù)田徑項目對應的長方形的高是200-20-44-40-36=60,補全條形圖,如圖:
圓心角度數(shù)為360°×=108°(4分)

(3)
∴該校2000名學生中,最喜歡收看田徑比賽的大約有600人.(7分)
點評:本題考查的是條形統(tǒng)計圖和折線統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2008•隨州)如圖,梯形ABCD中,AD∥BC,AB=DC,∠ABC=72°,現(xiàn)平行移動腰AB至DE后,再將△DCE沿DE折疊,得△DC′E,則∠EDC′的度數(shù)是
36
36
度.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•隨州)在平面直角坐標系中,矩形OABC的邊OA在x軸的負半軸上,邊OC在y軸的正半軸上,且OA=1,OC=2.將矩形OABC繞點O順時針旋轉90°,得到矩形DEFG(如圖1).
(1)若拋物線y=-x2+bx+c經(jīng)過點B和F,求此拋物線的解析式;
(2)將矩形DEFG以每秒1個單位長度的速度沿x軸負方向平移,平移t秒時,所成圖形如圖2所示.
①圖2中,在0<t<1的條件下,連接BF,BF與(1)中所求拋物線的對稱軸交于點Q,設矩形DEFG與矩形OABC重合部分的面積為S1,△AQF的面積為S2,試判斷S1+S2的值是否發(fā)生變化?如果不變,求出其值;
②在0<t<3的條件下,P是x軸上一點,請你探究:是否存在t值,使以PB為斜邊的Rt△PFB與Rt△AOC相似?若存在,直接寫出滿足條件t的值及點P的坐標;若不存在,請說明理由(利用圖3分析探索).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2008•隨州)某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經(jīng)市場調(diào)查知,年銷售量y(萬件)與銷售單位x(元/件)的關系滿足下表所示的規(guī)律.
銷售單價x(元/件)6065708085
年銷售量y(萬件)140135130120115
(1)y與x之間的函數(shù)關系式是______,自變量x的取值范圍為______;
(2)經(jīng)測算:年銷售量不低于90萬件時,每件產(chǎn)品成本降低2元,設銷售該產(chǎn)品年獲利潤為W(萬元)(W=年銷售額-成本-投資),求出年銷售量低于90萬件和不低于90萬件時,W與x之間的函數(shù)關系式;
(3)在(2)的條件下,當銷售單位定為多少時,公司銷售這種產(chǎn)品年獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省隨州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•隨州)在平面直角坐標系中,矩形OABC的邊OA在x軸的負半軸上,邊OC在y軸的正半軸上,且OA=1,OC=2.將矩形OABC繞點O順時針旋轉90°,得到矩形DEFG(如圖1).
(1)若拋物線y=-x2+bx+c經(jīng)過點B和F,求此拋物線的解析式;
(2)將矩形DEFG以每秒1個單位長度的速度沿x軸負方向平移,平移t秒時,所成圖形如圖2所示.
①圖2中,在0<t<1的條件下,連接BF,BF與(1)中所求拋物線的對稱軸交于點Q,設矩形DEFG與矩形OABC重合部分的面積為S1,△AQF的面積為S2,試判斷S1+S2的值是否發(fā)生變化?如果不變,求出其值;
②在0<t<3的條件下,P是x軸上一點,請你探究:是否存在t值,使以PB為斜邊的Rt△PFB與Rt△AOC相似?若存在,直接寫出滿足條件t的值及點P的坐標;若不存在,請說明理由(利用圖3分析探索).

查看答案和解析>>

科目:初中數(shù)學 來源:2008年湖北省隨州市中考數(shù)學試卷(解析版) 題型:解答題

(2008•隨州)某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經(jīng)市場調(diào)查知,年銷售量y(萬件)與銷售單位x(元/件)的關系滿足下表所示的規(guī)律.
銷售單價x(元/件)6065708085
年銷售量y(萬件)140135130120115
(1)y與x之間的函數(shù)關系式是______,自變量x的取值范圍為______;
(2)經(jīng)測算:年銷售量不低于90萬件時,每件產(chǎn)品成本降低2元,設銷售該產(chǎn)品年獲利潤為W(萬元)(W=年銷售額-成本-投資),求出年銷售量低于90萬件和不低于90萬件時,W與x之間的函數(shù)關系式;
(3)在(2)的條件下,當銷售單位定為多少時,公司銷售這種產(chǎn)品年獲利潤最大?最大利潤為多少萬元?

查看答案和解析>>

同步練習冊答案