(本小題10分) 在平面直角坐標(biāo)系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線:沿x軸平移,得到一條新拋物線與y軸交于點(diǎn)D,與直線AB交于點(diǎn)E、點(diǎn)F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過(guò)F作FH⊥x軸于點(diǎn)G,與直線l交于點(diǎn)H,一條直線m(m不過(guò)△AFH的頂點(diǎn))與AF交于點(diǎn)M,與FH交于點(diǎn)N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.
解:(1)設(shè)直線AB的解析式為.
將直線與x軸、y軸交點(diǎn)分別為(-2,0),(0,),
沿x軸翻折,則直線、直線AB
與x軸交于同一點(diǎn)(-2,0),
∴A(-2,0).
與y軸的交點(diǎn)(0,)與點(diǎn)B關(guān)于x軸對(duì)稱,
∴B(0,),
∴
解得,.
∴直線AB的解析式為 .·························································· 3分
(2)設(shè)平移后的拋物線的頂點(diǎn)為P(h,0),
則拋物線解析式為:=.
∴D(0,). ………4分
∵DF∥x軸,
∴點(diǎn)F(2h,), ………5分
又點(diǎn)F在直線AB上,
∴. ………6分
解得 ,.
∴拋物線的解析式為或.………7分
(3)過(guò)M作MT⊥FH于T,
∴Rt△MTF∽R(shí)t△AGF.
∴.
設(shè)FT=3k,TM=4k,F(xiàn)M=5k.
則FN=-FM=16-5k.……………8分
∴.
∵=48,
又.
∴.
解得或(舍去).
∴FM=6,F(xiàn)T=,MT=,GN=4,TG=.
∴M(,)、N(6,-4).
∴直線MN的解析式為:.······················································ 10分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本小題10分)在平面直角坐標(biāo)系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線:沿x軸平移,得到一條新拋物線與y軸交于點(diǎn)D,與直線AB交于點(diǎn)E、點(diǎn)F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過(guò)F作FH⊥x軸于點(diǎn)G,與直線l交于點(diǎn)H,一條直線m(m不過(guò)△AFH的頂點(diǎn))與AF交于點(diǎn)M,與FH交于點(diǎn)N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
O1,交BC于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于F,建立如圖12所示的平面直角坐標(biāo)系,已知A,
B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(-2,0).
(1)求C,D兩點(diǎn)的坐標(biāo).
(2)求證:EF為⊙O1的切線.
(3)探究:如圖13,線段CD上是否存在點(diǎn)P,使得線段PC的長(zhǎng)度與P點(diǎn)到y(tǒng)軸的距離相等?如果存在,請(qǐng)找出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年濱海新區(qū)大港初中畢業(yè)生學(xué)業(yè)考試第一次模擬試卷數(shù)學(xué) 題型:解答題
(本小題10分)在平面直角坐標(biāo)系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將拋物線:沿x軸平移,得到一條新拋物線與y軸交于點(diǎn)D,與直線AB交于點(diǎn)E、點(diǎn)F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點(diǎn)F在y軸右側(cè),過(guò)F作FH⊥x軸于點(diǎn)G,與直線l交于點(diǎn)H,一條直線m(m不過(guò)△AFH的頂點(diǎn))與AF交于點(diǎn)M,與FH交于點(diǎn)N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖南婁底卷)數(shù)學(xué) 題型:解答題
(本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
O1,交BC于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于F,建立如圖12所示的平面直角坐標(biāo)系,已知A,
B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(-2,0).
(1)求C,D兩點(diǎn)的坐標(biāo).
(2)求證:EF為⊙O1的切線.
(3)探究:如圖13,線段CD上是否存在點(diǎn)P,使得線段PC的長(zhǎng)度與P點(diǎn)到y(tǒng)軸的距離相等?如果存在,請(qǐng)找出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué) 題型:解答題
(本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
O1,交BC于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB于F,建立如圖12所示的平面直角坐標(biāo)系,已知A,
B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(-2,0).
(1)求C,D兩點(diǎn)的坐標(biāo).
(2)求證:EF為⊙O1的切線.
(3)探究:如圖13,線段CD上是否存在點(diǎn)P,使得線段PC的長(zhǎng)度與P點(diǎn)到y(tǒng)軸的距離相等?如果存在,請(qǐng)找出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com