如圖a,在平面直角坐標(biāo)系中,A(0,6),B(4,0)

(1)按要求畫圖:在圖a中,以原點(diǎn)O為位似中心,按比例尺1:2,將△AOB縮小,得到△DOC,使△AOB與△DOC在原點(diǎn)O的兩側(cè);并寫出點(diǎn)A的對應(yīng)點(diǎn)D的坐標(biāo)為______,點(diǎn)B的對應(yīng)點(diǎn)C的坐標(biāo)為______;
(2)已知某拋物線經(jīng)過B、C、D三點(diǎn),求該拋物線的函數(shù)關(guān)系式,并畫出大致圖象;
(3)連接DB,若點(diǎn)P在CB上,從點(diǎn)C向點(diǎn)B以每秒1個(gè)單位運(yùn)動(dòng),點(diǎn)Q在BD上,從點(diǎn)B向點(diǎn)D以每秒1個(gè)單位運(yùn)動(dòng),若P、Q兩點(diǎn)同時(shí)分別從點(diǎn)C、點(diǎn)B點(diǎn)出發(fā),經(jīng)過t秒,當(dāng)t為何值時(shí),△BPQ是等腰三角形?
【答案】分析:(1)在射線AO上截取OD=3,在射線BO上截取OC=2,然后連接CD,即可得到△DOC,然后根據(jù)平面直角坐標(biāo)系寫出點(diǎn)D、C的坐標(biāo)即可;
(2)根據(jù)點(diǎn)B、C的坐標(biāo)設(shè)交點(diǎn)式解析式y(tǒng)=a(x+2)(x-4),然后把點(diǎn)D的坐標(biāo)代入求出a的值,即可得到拋物線解析式,然后作出大致圖象即可;
(3)先用t表示出CP、BQ、BP的長度,并根據(jù)點(diǎn)B、D的坐標(biāo)求出OB、OD的長度,根據(jù)勾股定理求出BD的長度,然后分①Q(mào)P=QB時(shí),過Q作QG⊥BC于G,根據(jù)三角形三線合一的性質(zhì)可得BG=BP,再根據(jù)△BGQ和△BOD相似,利用相似三角形對應(yīng)邊成比例列式計(jì)算即可求出t的值;②BP=BQ時(shí),列出方程求解即可得到t的值;③PQ=PB時(shí),過P作PH⊥BD于H,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=BQ,再根據(jù)△BHP和△BOD相似,利用相似三角形對應(yīng)邊成比例列式計(jì)算即可求出t的值.
解答:解:(1)△DOC如圖所示,
點(diǎn)C(-2,0),D(0,-3),
故答案為:D(0,-3),C(-2,0);

(2)∵C(-2,0),B(4,0),設(shè)拋物線y=a(x+2)(x-4),
將D(0,-3)代入,得-8a=-3,
解得a=,
所以,y=(x+2)(x-4),
即y=x2-x-3,
大致圖象如圖所示;

(3)設(shè)經(jīng)過ts,△BPQ為等腰三角形,
此時(shí)CP=t,BQ=t,
所以,BP=6-t,
∵OD=3,OB=4,
∴BD===5,

①Q(mào)P=QB時(shí),如圖,過Q作QG⊥BC于G,則BG=BP=(6-t),
由△BGQ∽△BOD,得=,
=
解得t=s;
②BP=BQ時(shí),則6-t=t,
解得t=3s;

③PQ=PB時(shí),如圖,過P作PH⊥BD于H,則BH=BQ=t,
由△BHP∽△BOD,得=,
=,
解得t=s,
綜上所述,當(dāng)t=s或3s或s時(shí),△BPQ為等腰三角形.
點(diǎn)評:本題是二次函數(shù)的綜合題型,主要涉及了位似變換,待定系數(shù)法求二次函數(shù)解析式,解等腰三角形,(2)用拋物線的交點(diǎn)式形式求解比較簡單,(3)要注意根據(jù)等腰三角形的腰長的不同分情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請你猜一猜上述各點(diǎn)會在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對稱.

(1)請?jiān)趫D2中畫出點(diǎn), 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對稱時(shí),除了說明P、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊答案