(2013•無錫)如圖,直線x=-4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=-4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.
分析:(1)過點(diǎn)D作DF⊥x軸于點(diǎn)F,由拋物線的對(duì)稱性可知OF=AF,則2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根據(jù)相似三角形對(duì)應(yīng)邊成比例得出
AF
AE
=
AD
AB
=
1
2
,即AE=2AF②,①與②聯(lián)立組成二元一次方程組,解出AE=2,AF=1,進(jìn)而得到點(diǎn)A的坐標(biāo);
(2)先由拋物線過原點(diǎn)(0,0),設(shè)此拋物線的解析式為y=ax2+bx,再根據(jù)拋物線過原點(diǎn)(0,0)和A點(diǎn)(-2,0),求出對(duì)稱軸為直線x=-1,則由B點(diǎn)橫坐標(biāo)為-4得出C點(diǎn)橫坐標(biāo)為2,BC=6.再由OB>OC,可知當(dāng)△OBC是等腰三角形時(shí),可分兩種情況討論:①當(dāng)OB=BC時(shí),設(shè)B(-4,y1),列出方程,解方程求出y1的值,將A,B兩點(diǎn)坐標(biāo)代入y=ax2+bx,運(yùn)用待定系數(shù)法求出此拋物線的解析式;②當(dāng)OC=BC時(shí),設(shè)C(2,y2),列出方程,解方程求出y2的值,將A,C兩點(diǎn)坐標(biāo)代入y=ax2+bx,運(yùn)用待定系數(shù)法求出此拋物線的解析式.
解答:解:(1)如圖,過點(diǎn)D作DF⊥x軸于點(diǎn)F.
由題意,可知OF=AF,則2AF+AE=4①.
∵DF∥BE,
∴△ADF∽△ABE,
AF
AE
=
AD
AB
=
1
2
,即AE=2AF②,
①與②聯(lián)立,解得AE=2,AF=1,
∴點(diǎn)A的坐標(biāo)為(-2,0);

(2)∵拋物線過原點(diǎn)(0,0),
∴可設(shè)此拋物線的解析式為y=ax2+bx.
∵拋物線過原點(diǎn)(0,0)和A點(diǎn)(-2,0),
∴對(duì)稱軸為直線x=
-2+0
2
=-1,
∵B、C兩點(diǎn)關(guān)于直線x=-1對(duì)稱,B點(diǎn)橫坐標(biāo)為-4,
∴C點(diǎn)橫坐標(biāo)為2,
∴BC=2-(-4)=6.
∵拋物線開口向上,
∴∠OAB>90°,OB>AB=OC,
∴當(dāng)△OBC是等腰三角形時(shí),分兩種情況討論:
①當(dāng)OB=BC時(shí),設(shè)B(-4,y1),
則16+
y
2
1
=36,解得y1=±2
5
(負(fù)值舍去).
將A(-2,0),B(-4,2
5
)代入y=ax2+bx,
4a-2b=0
16a-4b=2
5
,解得
a=
5
4
b=
5
2

∴此拋物線的解析式為y=
5
4
x2+
5
2
x;
②當(dāng)OC=BC時(shí),設(shè)C(2,y2),
則4+
y
2
2
=36,解得y2=±4
2
(負(fù)值舍去).
將A(-2,0),C(2,4
2
)代入y=ax2+bx,
4a-2b=0
4a+2b=4
2
,解得
a=
2
2
b=
2

∴此拋物線的解析式為y=
2
2
x2+
2
x.
綜上可知,若△OBC是等腰三角形,此拋物線的函數(shù)關(guān)系式為y=
5
4
x2+
5
2
x或y=
2
2
x2+
2
x.
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合題型,其中涉及到二次函數(shù)的對(duì)稱性,相似三角形的判定與性質(zhì),運(yùn)用待定系數(shù)法求拋物線的解析式,等腰三角形的性質(zhì),兩點(diǎn)間的距離公式等知識(shí),綜合性較強(qiáng),難度適中.運(yùn)用數(shù)形結(jié)合、分類討論及方程思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•無錫)如圖,梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于O,AD=1,BC=4,則△AOD與△BOC的面積比等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•無錫)如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•無錫)如圖,菱形ABCD中,對(duì)角線AC交BD于O,AB=8,E是CB的中點(diǎn),則OE的長等于
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•無錫)如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=
45
45
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•無錫)如圖是一個(gè)幾何體的三視圖,若這個(gè)幾何體的體積是36,則它的表面積是
72
72

查看答案和解析>>

同步練習(xí)冊(cè)答案