將邊長(zhǎng)為3cm的正三角形各邊三等分,以這6個(gè)分點(diǎn)為頂點(diǎn)構(gòu)成一個(gè)正六邊形,則這個(gè)正六邊形的面積為( 。
A.
3
3
2
cm2
B.
3
3
4
cm2
C.
3
3
8
cm2
D.3
3
cm2
三角形的高=
32-(3÷2)2
=
3
2
3
,
三角形面積=3×
3
2
3
÷2=
9
4
3
cm2,
六邊形的面積=
9
4
3
×
2
3
=
3
2
3
cm2
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在一個(gè)正方體的兩個(gè)面上畫了兩條對(duì)角線AB,AC,那么這兩條對(duì)角線的夾角等于______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC為等邊三角形,AB=6,P是AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),過點(diǎn)P作AB的垂線與BC相交于點(diǎn)D,以點(diǎn)D為正方形的一個(gè)頂點(diǎn),在△ABC內(nèi)作正方形DEFG,其中D、E在BC上,F(xiàn)在AC上,
(1)設(shè)BP的長(zhǎng)為x,正方形DEFG的邊長(zhǎng)為y,寫出y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)BP=2時(shí),求CF的長(zhǎng);
(3)△GDP是否可能成為直角三角形?若能,求出BP的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

附加題,學(xué)完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60度.
(1)請(qǐng)你完成這道思考題;
(2)做完(1)后,同學(xué)們?cè)诶蠋煹膯l(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長(zhǎng)線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請(qǐng)你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對(duì)②,③的判斷,選擇一個(gè)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等邊三角形ABC中,BD平分∠ABC交AC于點(diǎn)D,過點(diǎn)D作DE⊥BC于E,且EC=1,則BC的長(zhǎng)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等邊△ABC和等邊△A′B′C′的面積分別為4、9,則△ABC、△A′B′C′的邊長(zhǎng)比為(  )
A.4:9B.16:81C.2:3D.3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為10,點(diǎn)P是邊AB的中點(diǎn),Q為BC延長(zhǎng)線上一點(diǎn),CQ:BC=1:2,過P作PE⊥AC于E,連PQ交AC邊于D,求DE的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等邊三角形的邊長(zhǎng)為4,則其面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知三角形三個(gè)頂點(diǎn)坐標(biāo),求三角形面積通常有三種方法:
方法一:直接法.計(jì)算三角形一邊的長(zhǎng),并求出該邊上的高.
方法二:補(bǔ)形法.將三角形面積轉(zhuǎn)化成若干個(gè)特殊的四邊形和三角形的面積的和與差.
方法三:分割法.選擇一條恰當(dāng)?shù)闹本,將三角形分割成兩個(gè)便于計(jì)算面積的三角形.
現(xiàn)給出三點(diǎn)坐標(biāo):A(2,-1),B(4,3),C(1,2),請(qǐng)你選擇一種方法計(jì)算△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案