等邊△ABC的邊長(zhǎng)為1,O為三角形內(nèi)一點(diǎn),作OD∥BC交AB于D,作OE∥AC于E,作OF∥AB交AC于F,則OE+OD+OF等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    1
  3. C.
    數(shù)學(xué)公式
  4. D.
    2
B
分析:延長(zhǎng)DO與AC相交于點(diǎn)G,延長(zhǎng)FO交BC于H,則可證:OE=CG,OD=AF,OF=FG,從而將OE+OD+OF轉(zhuǎn)化到等邊三角形的邊上求解.
解答:解:延長(zhǎng)DO與AC相交于點(diǎn)G,延長(zhǎng)FO交BC于H,
∵OD∥BC,OF∥AB,OE∥AC
∴CEOG是平行四邊形,BHOD是等腰梯形
∴OE=CG,DO=BH=AF
∵△ABC為等邊三角形
∴∠FOG=∠GOF=∠GFO=60°
∴△FOG為等邊三角形
∴OG=OF=FG
∴OE+OD+OF=CG+FG+AF=AC=1.
故選B.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì),綜合考查了平行四邊形、等邊三角形、等腰梯形的判定,輔助線的作法很關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),EF∥AC交線段AB于點(diǎn)F,在線段AC上取一點(diǎn)P,使PE=EB,連接FP.
(1)請(qǐng)直接寫(xiě)出圖中與線段EF相等的所有線段.(不再另外添加輔助線)
(2)點(diǎn)E滿足什么條件時(shí),四邊形EFPC是菱形,并說(shuō)明理由.
(3)在(2)的條件下,以點(diǎn)E為圓心,r為半徑作圓,根據(jù)E與此時(shí)平行四邊形EFPC四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為數(shù)學(xué)公式,以BC邊所在直線為x軸,BC邊上的高線AO所在的直線為y軸建立平面直角坐標(biāo)系.
(1)求過(guò)A、B、C三點(diǎn)的拋物線的解析式.
(2)如圖,設(shè)⊙P是△ABC的內(nèi)切圓,分別切AB、AC于E、F點(diǎn),求陰影部分的面積.
(3)點(diǎn)D為y軸上一動(dòng)點(diǎn),當(dāng)以D點(diǎn)為圓心,3為半徑的⊙D與直線AB、AC都相切時(shí),試判斷⊙D與(2)中⊙P的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.
(4)若(2)中⊙P的大小不變,圓心P設(shè)y軸運(yùn)動(dòng),設(shè)P點(diǎn)坐標(biāo)為(0,a),則⊙P與直線AB、AC有幾種位置關(guān)系?并寫(xiě)出相應(yīng)位置關(guān)系時(shí)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年山東省濟(jì)南市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為,以BC邊所在直線為x軸,BC邊上的高線AO所在的直線為y軸建立平面直角坐標(biāo)系.
(1)求過(guò)A、B、C三點(diǎn)的拋物線的解析式.
(2)如圖,設(shè)⊙P是△ABC的內(nèi)切圓,分別切AB、AC于E、F點(diǎn),求陰影部分的面積.
(3)點(diǎn)D為y軸上一動(dòng)點(diǎn),當(dāng)以D點(diǎn)為圓心,3為半徑的⊙D與直線AB、AC都相切時(shí),試判斷⊙D與(2)中⊙P的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由.
(4)若(2)中⊙P的大小不變,圓心P設(shè)y軸運(yùn)動(dòng),設(shè)P點(diǎn)坐標(biāo)為(0,a),則⊙P與直線AB、AC有幾種位置關(guān)系?并寫(xiě)出相應(yīng)位置關(guān)系時(shí)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省無(wú)錫市蠡園中學(xué)中考適應(yīng)性練習(xí)數(shù)學(xué)試卷(十六)(解析版) 題型:解答題

如圖,等邊△ABC的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),EF∥AC交線段AB于點(diǎn)F,在線段AC上取一點(diǎn)P,使PE=EB,連接FP.
(1)請(qǐng)直接寫(xiě)出圖中與線段EF相等的所有線段.(不再另外添加輔助線)
(2)點(diǎn)E滿足什么條件時(shí),四邊形EFPC是菱形,并說(shuō)明理由.
(3)在(2)的條件下,以點(diǎn)E為圓心,r為半徑作圓,根據(jù)E與此時(shí)平行四邊形EFPC四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:期末題 題型:單選題

如圖,已知等邊△ABC的邊長(zhǎng)為2,DE是它的中位線,則下面四個(gè)結(jié)論:
①DE=1,②△CDE∽△CAB,③△CDE的面積與△CAB的面積之比為1:4。
其中正確的有
[     ]
A.0 個(gè)    
B.1 個(gè)    
C.2 個(gè)    
D.3 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案