【題目】(11·永州)(本題滿分10分)如圖,已知二次函數(shù)的圖象經(jīng)過
A(,),B(0,7)兩點(diǎn).
⑴ 求該拋物線的解析式及對稱軸;
⑵ 當(dāng)為何值時,?
⑶ 在軸上方作平行于軸的直線,與拋物線交于C,D兩點(diǎn)(點(diǎn)C在對稱軸的左側(cè)),
過點(diǎn)C,D作軸的垂線,垂足分別為F,E.當(dāng)矩形CDEF為正方形時,求C點(diǎn)的坐標(biāo).
【答案】解:⑴把A(,),B(0,7)兩點(diǎn)的坐標(biāo)代入,得
解得
所以,該拋物線的解析式為,
又因?yàn)?/span>,所以對稱軸為直線.
⑵當(dāng)函數(shù)值時,的解為,
結(jié)合圖象,容易知道時,.
⑶當(dāng)矩形CDEF為正方形時,設(shè)C點(diǎn)的坐標(biāo)為(m,n),
則,即
因?yàn)?/span>C,D兩點(diǎn)的縱坐標(biāo)相等,所以C,D兩點(diǎn)關(guān)于對稱軸對稱,設(shè)點(diǎn)D的橫坐標(biāo)為,則,所以,所以CD=
因?yàn)?/span>CD=CF,所以,整理,得,解得或5.
因?yàn)辄c(diǎn)C在對稱軸的左側(cè),所以只能取.
當(dāng)時,==4
于是,得點(diǎn)C的坐標(biāo)為(,4).
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:y=x+1與y軸交于點(diǎn)A1,如圖所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,點(diǎn)A1,A2,A3,A4,……在直線l上,點(diǎn)C1,C2,C3,C4,……在x軸正半軸上,則前n個正方形對角線長的和是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將每件進(jìn)價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC的三個頂點(diǎn)坐標(biāo)分別為A(2,1),B(1,4),C(3,2).請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的右側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點(diǎn)的坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段BC上,請直接寫出經(jīng)過(2)的變化后對應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時期的數(shù)學(xué)家劉徽(263年左右)首創(chuàng)“割圓術(shù)”,所謂“割圓術(shù)”就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計(jì)算出圓周率.劉微從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,…,割得越細(xì),正多邊形就越接近圓.設(shè)圓的半徑為,圓內(nèi)接正六邊形的周長,計(jì)算;圓內(nèi)接正十二邊形的周長,計(jì)算;那么分割到圓內(nèi)接正二十四邊形后,通過計(jì)算可以得到圓周率__________.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計(jì)圖如下:
根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
B.2019年的月接待旅游量的平均值超過300萬人次
C.2017年至2019年,年接待旅游量逐年增加
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解決問題:
如圖,為了求平面直角坐標(biāo)系中任意兩點(diǎn)A(x1,y1)、B(x2,y2)之間的距離,可以AB為斜邊作Rt△ABC,則點(diǎn)C的坐標(biāo)為C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,根據(jù)勾股定理可得AB=,反之,可以將代數(shù)式的值看做平面內(nèi)點(diǎn)(x1,y1)到點(diǎn)(x2,y2)的距離.
例如∵= =,可將代數(shù)式看作平面內(nèi)點(diǎn)(x,y)到點(diǎn)(﹣1,3)的距離
根據(jù)以上材料解決下列問題
(1)求平面內(nèi)點(diǎn)M(2,﹣3)與點(diǎn)N(﹣1,3)之間的距離;
(2)求代數(shù)式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育行政部門規(guī)定初中生每天戶外活動的平均時間不少于1小時,為了解學(xué)生戶外活動的情況,隨機(jī)地對部分學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查的學(xué)生人數(shù)為 ;活動時間為1小時所占的比例是 .
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市共有初中生約14000名,試估計(jì)該市符合教育行政部門規(guī)定的活動時間的學(xué)生數(shù);
(4)如果從中任意抽取1名學(xué)生,活動時間為2小時的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com