(2001•黃岡)已知:如圖,△ABC中,AB=AC=10,BC=12,F(xiàn)為BC的中點(diǎn),D是FC上的一點(diǎn),過點(diǎn)D作BC的垂線交AC于點(diǎn)G,交BA的延長線于點(diǎn)E,如果設(shè)DC=x,則
(1)圖中哪些線段(如線段BD可記作yBD)可以看成是x的函數(shù)[如yBD=12-x(0<x<6,yFD6-x(0<x<6)]?請?jiān)賹懗銎渲械乃膫(gè)函數(shù)關(guān)系式:①
yDG=
4
3
x
yDG=
4
3
x
;②
yGC=
5
3
x
yGC=
5
3
x
;③
yAG=-
5
3
x
+10
yAG=-
5
3
x
+10
;④
yAE=
5
3
(6-x)=-
5
3
x+10
yAE=
5
3
(6-x)=-
5
3
x+10

(2)圖中哪些圖形的面積(如△CDG的面積可記作S△CDG)可以看成是x的函數(shù)[如S△CDG=
2
3
x2
(0<x<6)],請?jiān)賹懗銎渲械膬蓚(gè)函數(shù)關(guān)系式:①
S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96
S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96
;②
S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24
S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24
分析:(1)△ABC中,AB=AC=10,BC=12,F(xiàn)為BC的中點(diǎn),則FC=BF=6,△ABF和△ACF是兩個(gè)全等的三角形,且△CGD∽△CAF,根據(jù)相似三角形的對應(yīng)邊的比相等,即可寫出.(答案不唯一);
(2)根據(jù)(1)中的結(jié)論,利用三角形的面積公式即可求解.(答案不唯一).
解答:解:(1)①yDG=
4
3
x;②yGC=
5
3
x;③yAG=-
5
3
x
+10;④yAE=
5
3
(6-x)=-
5
3
x+10;⑤yDE=
4
3
(12-x)=-
4
3
x+16;⑥yEG=
8
3
(6-x)=-
8
3
x+16;⑦yDE=
5
3
(12-x)=-
5
3
x+20等,其中0<x<6.
?(2)①S△AEG=
4
3
(6-x)2=
4
3
x2-16x+4;
?②S△BDE=
2
3
(12-x)2=
2
3
x2-16x+96;
??③S四邊形AGDF=
2
3
(36-x2)=-
2
3
x2+24;
??④S四邊形ABDG=-
2
3
x2+48;
??⑤S四邊形AFDE=
2
3
(12-x)2-24=
2
3
x2-16x+72;
??⑥S四邊形BEGC=
4
3
(72-12x+x2)=
4
3
x2+16x+96等,其中0<x<6.
點(diǎn)評:本題考查建立幾何量間的函數(shù)關(guān)系式,解本題時(shí)先要理解新定義的函數(shù)記法,再結(jié)合隱含的等腰三角形、兩線平行、三角形相似等條件,找出符合題意的函數(shù)解析式.本題結(jié)論較多,具有開放性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,過點(diǎn)P的直線交⊙O1于點(diǎn)D,交⊙O2于點(diǎn)E;DA與⊙O2相切,切點(diǎn)為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個(gè)實(shí)數(shù)根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當(dāng)a=-1-2
2
,β=-1+2
2
時(shí),同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個(gè)實(shí)數(shù)根,求代數(shù)式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)已知一個(gè)二次函數(shù)的圖象經(jīng)過A(4,-3),B(2,1)和C(-1,-8)三點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式以及它的圖象與x軸的交點(diǎn)M,N(M在N的左邊)的坐標(biāo).
(2)若以線段MN為直徑作⊙G,過坐標(biāo)原點(diǎn)O作⊙G的切線OD,切點(diǎn)為D,求OD的長.
(3)求直線OD的解析式.
(4)在直線OD上是否存在點(diǎn)P,使得△MNP是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo)(只需寫出結(jié)果,不必寫出解答過程);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案