【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣4,0),直線(xiàn)l∥x軸,交y軸于點(diǎn)C(0,3),點(diǎn)B(﹣4,3)在直線(xiàn)l上,將矩形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)α度,得到矩形OA′B′C′,此時(shí)直線(xiàn)OA′、B′C′分別與直線(xiàn)l相交于點(diǎn)P、Q.
(1)當(dāng)α=90°時(shí),點(diǎn)B′的坐標(biāo)為 .
(2)如圖2,當(dāng)點(diǎn)A′落在l上時(shí),點(diǎn)P的坐標(biāo)為 ;
(3)如圖3,當(dāng)矩形OA′B′C′的頂點(diǎn)B′落在l上時(shí).
①求OP的長(zhǎng)度;②S△OPB′的值是 .
(4)在矩形OABC旋轉(zhuǎn)的過(guò)程中(旋轉(zhuǎn)角0°<α≤180°),以O,P,B′,Q為頂點(diǎn)的四邊形能否成為平行四邊形?如果能,請(qǐng)直接寫(xiě)出點(diǎn)B′和點(diǎn)P的坐標(biāo);如果不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.
【答案】(1)(3,4);(2)(﹣,3);(3)①OP= ;② ;(4)在矩形OABC旋轉(zhuǎn)的過(guò)程中(旋轉(zhuǎn)角0°<α≤180°),以O,P,B′,Q為頂點(diǎn)的四邊形能成為平行四邊形,此時(shí)點(diǎn)B′的坐標(biāo)為(5,0),點(diǎn)P的坐標(biāo)為(4,3).
【解析】
(1)根據(jù)旋轉(zhuǎn)的得到B′的坐標(biāo);
(2)根據(jù)在Rt△OCA′,利用勾股定理即可求解;
(3)①根據(jù)已知條件得到△CPO≌△A′PB′,設(shè)OP=x,則CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+32即可求出x的值,即可求解;②根據(jù)S△OPB′=PB′OC即可求解;
(4)當(dāng)點(diǎn)B′落在x軸上時(shí),由OB′∥PQ,OP∥B′Q,此時(shí)四邊形OPQB′為平行四邊形,再根據(jù)平行四邊形的性質(zhì)即可求解.
解:(1)∵A(﹣4,0),B(﹣4,3),
∴OA=4,AB=3.
由旋轉(zhuǎn)的性質(zhì),可知:OA′=OA=4,A′B′=AB=3,
∴當(dāng)α=90°時(shí),點(diǎn)B′的坐標(biāo)為(3,4).
故答案為:(3,4).
(2)在Rt△OCA′中,OA′=4,OC=3,
∴A′C==,
∴當(dāng)點(diǎn)A′落在l上時(shí),點(diǎn)P的坐標(biāo)為(﹣,3).
故答案為:(﹣,3).
(3)①當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在BC的延長(zhǎng)線(xiàn)上時(shí),
在△CPO和△A′PB′中,,
∴△CPO≌△A′PB′(AAS),
∴OP=B′P,CP=A′P.
設(shè)OP=x,則CP=A′P=4﹣x.
在Rt△CPO中,OP=x,CP=4﹣x,OC=3,
∴OP2=OC2+CP2,即x2=(4﹣x)2+32,
解得:x=,
∴OP=.
②∵B′P=OP=,
∴S△OPB′=PB′OC=××3=.
故答案為:.
(4)當(dāng)點(diǎn)B′落在x軸上時(shí),∵OB′∥PQ,OP∥B′Q,
∴此時(shí)四邊形OPQB′為平行四邊形.
過(guò)點(diǎn)A′作A′E⊥x軸于點(diǎn)E,如圖4所示.
∵OA′=4,A′B′=3,
∴OB′==5,A′E==,OE==,
∴點(diǎn)B′的坐標(biāo)為(5,0),點(diǎn)A′的坐標(biāo)為(,).
設(shè)直線(xiàn)OA′的解析式為y=kx(k≠0),
將A′(,)代入y=kx,得:
=k,解得:k=,
∴直線(xiàn)OA′的解析式為y=x.
當(dāng)y=3時(shí),有x=3,
解得:x=4,
∴點(diǎn)P的坐標(biāo)為(4,3).
∴在矩形OABC旋轉(zhuǎn)的過(guò)程中(旋轉(zhuǎn)角0°<α≤180°),以O,P,B′,Q為頂點(diǎn)的四邊形能成為平行四邊形,此時(shí)點(diǎn)B′的坐標(biāo)為(5,0),點(diǎn)P的坐標(biāo)為(4,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十·一”黃金周期間,武漢動(dòng)物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬(wàn)人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請(qǐng)用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請(qǐng)判斷七天內(nèi)游客人數(shù)最多的是哪天?請(qǐng)說(shuō)明理由。
(3)若9月30日的游客人數(shù)為2萬(wàn)人,門(mén)票每人10元。問(wèn)黃金周期間武漢動(dòng)物園門(mén)票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在研究位似問(wèn)題時(shí),甲、乙同學(xué)的說(shuō)法如下:
甲:如圖①,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F的坐標(biāo)分別為(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)P在GC上)是位似中心,則點(diǎn)P的坐標(biāo)為(0,2).
圖① 圖②
乙:如圖②,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度,以點(diǎn)C為位似中心,在網(wǎng)格中畫(huà)△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,則點(diǎn)B1的坐標(biāo)為(4,0).
對(duì)于兩人的觀(guān)點(diǎn),下列說(shuō)法正確的是( )
A. 兩人都對(duì) B. 兩人都不對(duì) C. 甲對(duì)乙不對(duì) D. 甲不對(duì)乙對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)O,A的坐標(biāo)分別為(0,0),(﹣3,﹣2).
(1)點(diǎn)B的坐標(biāo)是 ,點(diǎn)B與點(diǎn)A的位置關(guān)系是 .現(xiàn)將點(diǎn)B,點(diǎn)A都向右平移5個(gè)單位長(zhǎng)度分別得到對(duì)應(yīng)點(diǎn)C和D,順次連接點(diǎn)A,B,C,D,畫(huà)出四邊形ABCD;
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)成為整數(shù)點(diǎn),在四邊形ABCD內(nèi)部(不包括邊界)的整數(shù)點(diǎn)M使S△ABM=8,請(qǐng)直接寫(xiě)出所有點(diǎn)M的可能坐標(biāo);
(3)若一條經(jīng)過(guò)點(diǎn)(0,﹣4)的直線(xiàn)把四邊形ABCD的面積等分,則這條直線(xiàn)的表達(dá)式是 ,并在圖中畫(huà)出這條直線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為20m,寬為15m的長(zhǎng)方形空地上修建一條寬為a(m)的甬道,余下的部分鋪設(shè)草坪建成綠地.
(1)甬道的面積為 m2,綠地的面積為 m2(用含a的代數(shù)式表示);
(2)已知某公園公司修建甬道,綠地的造價(jià)W1(元),W2(元)與修建面積S之間的函數(shù)關(guān)系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價(jià)分別為 元, 元.②直接寫(xiě)出修建甬道的造價(jià)W1(元),修建綠地的造價(jià)W2(元)與a(m)的關(guān)系式;③如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的甬道寬度不少于2m且不超過(guò)5m,那么甬道寬為多少時(shí),修建的甬道和綠地的總造價(jià)最低,最低總造價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=60°,過(guò)點(diǎn)C作CD∥AB,若∠ACD=60°,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一組數(shù),-,,-,…,(從左往右數(shù),第1個(gè)數(shù)是,第2個(gè)數(shù)是-,第3個(gè)數(shù)是,第4個(gè)數(shù)是-,依此類(lèi)推,第n個(gè)數(shù)是).
(1)分別寫(xiě)出第5個(gè)、第6個(gè)數(shù);
(2)記這組數(shù)的前n個(gè)數(shù)的和是sn,如:
s1=(可表示為1+);
s2=+(-)=(可表示為1-);
s 3=+(-)+=(可表示為1+);
s4=+(-)++(-)=(可表示為1-).
請(qǐng)計(jì)算S99的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條筆直的公路依次經(jīng)過(guò)A,B,C三地,且A,B兩地相距1000m,B,C兩地相距2000m.甲、乙兩人騎車(chē)分別從A,B兩地同時(shí)出發(fā)前往C地.
(1)若甲每分鐘比乙多騎100m,且甲、乙同時(shí)到達(dá)C地 ,求甲的速度;
(2)若出發(fā)5 min,甲還未騎到B地,且此時(shí)甲、乙兩人相距不到650m,請(qǐng)判斷誰(shuí)先到達(dá)C地,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“世界那么大,我想去看看”一句話(huà)紅遍網(wǎng)絡(luò),騎自行車(chē)旅行越來(lái)越受到人們的喜愛(ài).各種品牌的山地車(chē)相繼投放市場(chǎng).順風(fēng)車(chē)行經(jīng)營(yíng)的型車(chē)2018年6月份銷(xiāo)售總額為萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后型車(chē)每輛銷(xiāo)售價(jià)比去年增加元,若今年6月份與去年6月份賣(mài)出的型車(chē)數(shù)量相同,則今年6月份型車(chē)銷(xiāo)售總額將比去年6月份銷(xiāo)售總額增加.
(1)今年6月份型車(chē)每輛售價(jià)多少元?(用列方程的方法解答)
(2)已知兩種型號(hào)車(chē)今年的進(jìn)貨及銷(xiāo)售價(jià)格如下表:
型車(chē) | 型車(chē) | |
進(jìn)貨價(jià)格(元/輛) | ||
銷(xiāo)售價(jià)格(元/輛) | 今年的銷(xiāo)售價(jià)格 |
該車(chē)行計(jì)劃7月份進(jìn)這批型車(chē)和型車(chē)共輛,且型車(chē)的進(jìn)貨數(shù)量不超過(guò)型車(chē)數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能是這批車(chē)獲利最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com