如圖,將一張正方形紙片剪成四個小正方形,然后將其中的一個正方形再剪成四個小正方形,再將其中的一個正方形剪成四個小正方形,如此繼續(xù)下去,…,請你根據(jù)以上操作方法得到的正方形的個數(shù)的規(guī)律完成各題.
(1)將下表填寫完整;
精英家教網(wǎng)
(2)an=
 
(用含n的代數(shù)式表示);
(3)按照上述方法,能否得到2009個正方形?如果能,請求出n;如果不能,請簡述理由.
精英家教網(wǎng)
分析:本題是一道關(guān)于數(shù)字猜想的問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.每多剪一次,正方形的個數(shù)增加3個,由此得出規(guī)律.
解答:解:(1)精英家教網(wǎng)

(2)an=3n+1;

(3)不能.
假設能,則3n+1=2009,
解得:n=
2008
3
,n不為整數(shù),不成立;
所以不能得到2009個正方形.
點評:主要考查了學生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、如圖,把一張正方形的紙對折,再把對折以后的長方形右下角折到左上角,那么將這張紙展開后,折痕形如( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,把一張標準紙一次又一次對開,得到“2開”紙,“4開”紙,“8開”紙,“16開”紙….已知標準紙的短邊長為a.
(1)如圖2,把這張標準紙對開得到的“16開”張紙按如下步驟折疊:
第一步:將矩形的短邊AB與長邊AD對齊折疊,點B落在AD上的點B'處,鋪平后得折痕AE;
第二步:將長邊AD與折痕AE對齊折疊,點D正好與點E重合,鋪平后得折痕AF.
則AD:AB的值是
 
,AD,AB的長分別是
 
,
 
;
(2)“2開”紙,“4開”紙,“8開”紙的長與寬之比是否都相等?若相等,直接寫出這個比值;若不相等,請分別計算它們的比值;
(3)如圖3,由8個大小相等的小正方形構(gòu)成“L”型圖案,它的四個頂點E,F(xiàn),G,H分別在“16開”紙的邊AB,BC,CD,DA上,求DG的長;
(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四個頂點M,N,P,Q都在“4開”紙的邊上,請直接寫出2個符合條件且大小不同的直角梯形的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,把一張正方形的紙對折,再把對折以后的長方形右下角折到左上角,那么將這張紙展開后,折痕形如


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,把一張標準紙一次又一次對開,得到“2開”紙,“4開”紙,“8開”紙,“16開”紙….已知標準紙的短邊長為a.
(1)如圖2,把這張標準紙對開得到的“16開”張紙按如下步驟折疊:
第一步:將矩形的短邊AB與長邊AD對齊折疊,點B落在AD上的點B'處,鋪平后得折痕AE;
第二步:將長邊AD與折痕AE對齊折疊,點D正好與點E重合,鋪平后得折痕AF.
則AD:AB的值是______,AD,AB的長分別是______,______;
(2)“2開”紙,“4開”紙,“8開”紙的長與寬之比是否都相等?若相等,直接寫出這個比值;若不相等,請分別計算它們的比值;
(3)如圖3,由8個大小相等的小正方形構(gòu)成“L”型圖案,它的四個頂點E,F(xiàn),G,H分別在“16開”紙的邊AB,BC,CD,DA上,求DG的長;
(4)已知梯形MNPQ中,MN∥PQ,∠M=90°,MN=MQ=2PQ,且四個頂點M,N,P,Q都在“4開”紙的邊上,請直接寫出2個符合條件且大小不同的直角梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

如圖所示,將一張正方形紙,正六邊形紙、正八邊形紙分別沿著虛線折2次,3次,4次,得到一個多層的三角形紙,用剪刀在折疊好的紙上,隨意剪出一條線,將紙打開后,根據(jù)所得的圖形回答問題:
(1)當所給的紙是正方形時,所得的圖形最少有_____條對稱軸;
(2)當所給的紙是正六邊形時,所得的圖形最少有_____條對稱軸;
(3)當所給的紙是正八邊形時,所得的圖形最少有_____條對稱軸;
(4)請你說出其中的規(guī)律。

查看答案和解析>>

同步練習冊答案