在直角坐標(biāo)系中,已知A(-3,0),B(0,-4),C(0,1),過點(diǎn)C作直線L交x軸于點(diǎn)D,使得以點(diǎn)D、C、O為頂點(diǎn)的三角形與△AOB相相似,這樣的直線一共可以作出    條.
【答案】分析:本題可根據(jù)題意先算出OA、OB、OC的值,再根據(jù)△AOB∽△DOC和△AOB∽△COD兩種情況分別談?wù),即可得出答案?br />解答:解:∵A(-3,0),B(0,-4),C(0,1),
∴OA=3,OB=4,OC=1,△AOB是直角三角形,當(dāng)△AOB∽△DOC時(shí),DC有兩種情況,
當(dāng)△AOB∽△COD時(shí),CD分別在y軸的兩側(cè),有兩種情況,因而這樣的直線一共可以作出4條.
點(diǎn)評(píng):分兩種情況進(jìn)行討論是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若P為直線AB上一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎如果是,試說明理由,如果不是,請(qǐng)?jiān)诰段AB上求一點(diǎn)C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,-4),C(0,1),過點(diǎn)C作直線DC交x軸于點(diǎn)D,使得以D、C、O為頂點(diǎn)的三角形與△AOB相似,這樣的直線一共可以作出( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•從化市一模)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是
(24,0)
(24,0)
,第(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形精英家教網(wǎng)的直角頂點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

同步練習(xí)冊(cè)答案