【題目】如圖,在Rt△ABC中,∠ACB=90°,以直角邊BC為直徑作⊙O、交AB于點D,E為AC的中點,連接DE
(1)求證:DE為⊙O的切線;
(2)已知BC=4.填空.
①當(dāng)DE= 時,四邊形DOCE為正方形;
②當(dāng)DE= 時,△BOD為等邊三角形.
【答案】(1)證明見解析;(2)①2;②2.
【解析】
(1)連接CD,根據(jù)圓周角定理得出∠CDB=90°,根據(jù)直角三角形性質(zhì)得出DE=CE=AE,求出∠ACD+∠DCO=∠EDC+∠CDO,求出OD⊥DE,根據(jù)切線的判定得出即可;
(2)①若四邊形DOCE為正方形,則OC=OD=DE=CE=2;
②若△BOD為等邊三角形,則∠DOE=60°,則Rt△ODE中,則DE=2.
(1)如圖,連接CD,OE,
∵BC為⊙O的直徑,
∴∠BDC=90°,
∵DE為Rt△ADC的斜邊AC上的中線,
在△COE與△DOE中,OD=CC,OE=OE,DE=CE,
∴△COE≌△DOE,
∴∠OCE=∠ODE=90°,
DE為⊙O的切線;
(2)①若四邊形DOCE為正方形,則OC=OD=DE=CE,
∵BC=4,
∴DE=2.
②若△BOD為等邊三角形,
∴∠BOD=60°,
∴∠COD=180°﹣∠BOD=120°,
∴∠DOE=60°,
∴Rt△ODE中,DE=OD.
故答案為:2,2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高速鐵路位于某省南部,是國家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟(jì)寧、菏澤,與鄭徐客運(yùn)專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個高鐵維護(hù)站,如圖①,現(xiàn)在想過B處在河上修一座橋,需要知道河寬,一測量員在河對岸的A處測得B在它的東北方向,測量員從A點開始沿岸邊向正東方向前進(jìn)300米到達(dá)點C處,測得B在C的北偏西30度方向上.
(1)求所測之處河的寬度;(結(jié)果保留的十分位)
(2)除(1)的測量方案外,請你再設(shè)計一種測量河寬的方案,并在圖②中畫出圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點在邊上,且,點為的中點,點為邊上的動點,當(dāng)點在上移動時,使四邊形周長最小的點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達(dá)到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù) 來確定獎勵標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個數(shù)達(dá)到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點D和E,作直線DE交AB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于點G,BG=4,則△EFC的周長為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點B,且頂點在直線x=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標(biāo);
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作∥BD交x軸于點N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+6x﹣5與x軸交于A,B兩點(點A在點B左邊),與y軸交于點C.點P是拋物線上一個動點,過點P作x軸的垂線,垂足為點H,交直線BC于點E.
(1)求點A,B,C的坐標(biāo);
(2)連接CP,當(dāng)CP平分∠OCB時,求點P的坐標(biāo);
(3)平面直角坐標(biāo)系內(nèi)是否存在點Q,使得以點P,E,B,Q為頂點的四邊形為菱形?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com