(2006•旅順口區(qū))已知關(guān)于x的方程2x2-kx+1=0的一個解與方程的解相同.
(1)求k的值;
(2)求方程2x2-kx+1=0的另一個解.
【答案】分析:(1)分式方程較完整,可先求出分式方程的解,代入整式方程即可求得k的值.
(2)根據(jù)兩根之和=-即可求得另一根的解.
解答:解:(1)解方程:,得
2x+1=4-4x.

經(jīng)檢驗是原方程的解.
代入方程2x2-kx+1=0.
解得k=3.
(2)當(dāng)k=3時,方程為2x2-3x+1=0.
由根與系數(shù)關(guān)系得方程另一個解為:x=-=1.
點評:此題主要考查方程解的意義,及同解方程、解方程等知識.注意運用根與系數(shù)的關(guān)系使運算簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•旅順口區(qū))已知拋物線y=x2-4x+1.將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)若直線y=m與這兩條拋物線有且只有四個交點,求實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=ax2+bx+c(a>0,b<0),并將此拋物線沿x軸方向向左平移-個單位長度,試探索問題(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實驗研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標數(shù)是隨著老師講課時間的變化而變化的,講課開始時,學(xué)生的興趣激增,中間有一段時間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標數(shù)y隨時間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時,圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時,圖象是線段.
(1)當(dāng)0≤x≤10時,求注意力指標數(shù)y與時間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時,注意力的指標數(shù)都不低于36?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河南省鄭州市董老師奧數(shù)二模試卷(2)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實驗研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標數(shù)是隨著老師講課時間的變化而變化的,講課開始時,學(xué)生的興趣激增,中間有一段時間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標數(shù)y隨時間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時,圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時,圖象是線段.
(1)當(dāng)0≤x≤10時,求注意力指標數(shù)y與時間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時,注意力的指標數(shù)都不低于36?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省大連市旅順口區(qū)中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•旅順口區(qū))已知拋物線y=x2-4x+1.將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)若直線y=m與這兩條拋物線有且只有四個交點,求實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=ax2+bx+c(a>0,b<0),并將此拋物線沿x軸方向向左平移-個單位長度,試探索問題(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省大連市旅順口區(qū)中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實驗研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標數(shù)是隨著老師講課時間的變化而變化的,講課開始時,學(xué)生的興趣激增,中間有一段時間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標數(shù)y隨時間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時,圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時,圖象是線段.
(1)當(dāng)0≤x≤10時,求注意力指標數(shù)y與時間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時,注意力的指標數(shù)都不低于36?

查看答案和解析>>

同步練習(xí)冊答案