在平面直角坐標(biāo)系中,給定以下五點A(-2,0),B(1,0),C(4,0),D(-2,),E(0,-6),從這五點中取三點,使經(jīng)過這三點的拋物線滿足以平行于y軸的直線為對稱軸.我們約定:把經(jīng)過三點A、E、B的拋物線表示為拋物線AEB(如圖所示).

(1)問符合條件的拋物線還有哪幾條?不求解析式,請用約定的方法一一表示出來;

(2)在(1)中是否存在這樣的一條拋物線,它與余下的兩點所確定的直線不相交?如果存在,試求出拋物線及直線的解析式;如果不存在,請說明理由.

答案:
解析:

  (1)符合條件的拋物線還有5條,分別如下:①拋物線AEC;②拋物線CBE;③拋物線DEB;④拋物線DEC;⑤拋物線DBC;

  (2)在(1)中存在拋物線DBC,它與直線AE不相交.設(shè)拋物線DBC的解析式為y=ax3+bx+c,將D(-2,),B(1,0),C(4,0)三點分別代入,得:解這個方程組,得:a=,b=-,c=1.拋物線DBC的解析式為y=x2x+1.(另法:設(shè)拋物線為y=a(x-1)(x-4),代入D(-2,),得a=也可.)又設(shè)直線AE的解析式為y=mx+n.將A(-2,0),E(0,-6)兩點坐標(biāo)分別代入,得:解這個方程組,得m=-3,n=-6.∴直線AE的解析式為y=-3x-6.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案