(2010•青島)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:BE=DF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM,F(xiàn)M,判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

【答案】分析:(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;
(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相垂直平分,根據(jù)對角線互相垂直且平分的四邊形是菱形,即可判定四邊形AEMF是菱形.
解答:(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL)
∴BE=DF;(4分)

(2)解:四邊形AEMF是菱形,理由為:
證明:∵四邊形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),
∵BE=DF(已證),
∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,又OM=OA,
∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),
∵AE=AF,
∴平行四邊形AEMF是菱形.(8分)
點評:此題主要考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì)及菱形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•青島)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動、DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5)解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•青島)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動、DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5)解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2010•青島)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動、DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5)解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•青島)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動、DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5)解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省青島市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•青島)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:BE=DF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM,F(xiàn)M,判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案