如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,且點(diǎn)C恰好成為AD的中點(diǎn).
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長(zhǎng).
(1)旋轉(zhuǎn)中心是點(diǎn)A,150°;(2)60°,2.
【解析】
試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等以及每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等,所以可求出:∠CAE=BAD=180°-∠B-∠ACB=150°,從而確定旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)利用周角的定義可求出∠BAE=360°-150°×2=60°,全等的性質(zhì)可知AE=AB=2cm.
試題解析::(1)∵△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,A為頂點(diǎn),
∴旋轉(zhuǎn)中心是點(diǎn)A;
根據(jù)旋轉(zhuǎn)的性質(zhì)可知:∠CAE=∠BAD=180°-∠B-∠ACB=150°,
∴旋轉(zhuǎn)角度是150°;
(2)由(1)可知:∠BAE=360°-150°×2=60°,
由旋轉(zhuǎn)可知:△ABC≌△ADE,
∴AB=AD,AC=AE,又C為AD中點(diǎn),
∴AC=AE=AB=×4=2cm.
考點(diǎn): 旋轉(zhuǎn)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com