如果一個三角形和一個矩形滿足下列條件:三角形的一邊與矩形的一邊完全重合,并且三角形的這條邊所對的角的頂點落在矩形與三角形重合的邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”. 如圖①所示,矩形ABEF即為△ABC的“友好矩形”.我們發(fā)現(xiàn):當△ABC是鈍角三角形時,其“友好矩形”只有一個.
(1)仿照以上敘述,請你說明什么是一個三角形的“友好平行四邊形”;
(2)如圖②,若△ABC為直角三角形,且∠C=90°,在圖②中畫出△ABC的所有“友好矩形”;
(3)若△ABC是銳角三角形,且AB=5cm,AC=7cm,BC=8cm,在圖③中畫出△ABC的所有“友好矩形”,指出其中周長最大的矩形并說明理由.

【答案】分析:(1)仿照友好矩形的定義即可得出友好平行四邊形的定義;
(2)根據(jù)友好矩形的定義得出分別以AB為邊和對角線得出△ABC的所有“友好矩形”即可;
(3)利用勾股定理得出BD,AD的長,進而分別求出以BC、AB、AC為邊的“友好矩形”周長比較即可.
解答:解:(1)三角形的一邊與平行四邊形的一邊完全重合,并且三角形的這條邊所對的角的頂點落在平行四邊形與三角形重合的邊的對邊上,
則稱這樣的平行四邊形為三角形的“友好平行四邊形”.

(2)如圖②所示:


(3)如圖③,過A做AD⊥BC于D
設BD長為x cm,則DC長為(8-x)
在Rt△ABD和Rt△ADC中AD2=AB2-BD2=52-x2,AD2=AC2-DC2=72-(8-x)2
則52-x2=72-(8-x)2
解得:x=2.5,
過A做AD⊥BC于D,則有,
則以BC為邊的“友好矩形”周長為:
以AB為邊的“友好矩形”周長為:,
以AC為邊的“友好矩形”周長為:,
∴以BC為邊的“友好矩形”周長最大.
點評:此題主要考查了四邊形綜合題以及勾股定理等知識,考查學生的閱讀理解、綜合分析及分類討論能力,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀以下短文,然后解決下列問題:
如果一個三角形和一個矩形滿足條件:三角形的一邊與矩形的一邊重合,且三角形的這邊所對的頂點在矩形這邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”,如圖①所示,矩形ABEF即為△ABC的“友好矩形”,顯然,當△ABC是鈍角三角形時,其“友好矩形”只有一個.
(1)仿照以上敘述,說明什么是一個三角形的“友好平行四邊形”;
(2)如圖②,若△ABC為直角三角形,且∠C=90°,在圖②中畫出△ABC的所有“友好矩形”,并比較這些矩形面積的大;
(3)若△ABC是銳角三角形,且BC>AC>AB,在圖③中畫出△ABC的所有“友好矩形”,指出其中周長最小的矩形并加以證明.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•貴陽模擬)如果一個三角形和一個矩形滿足下列條件:三角形的一邊與矩形的一邊完全重合,并且三角形的這條邊所對的角的頂點落在矩形與三角形重合的邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”. 如圖①所示,矩形ABEF即為△ABC的“友好矩形”.我們發(fā)現(xiàn):當△ABC是鈍角三角形時,其“友好矩形”只有一個.
(1)仿照以上敘述,請你說明什么是一個三角形的“友好平行四邊形”;
(2)如圖②,若△ABC為直角三角形,且∠C=90°,在圖②中畫出△ABC的所有“友好矩形”;
(3)若△ABC是銳角三角形,且AB=5cm,AC=7cm,BC=8cm,在圖③中畫出△ABC的所有“友好矩形”,指出其中周長最大的矩形并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀以下短文,然后解決下列問題:
如果一個三角形和一個矩形滿足條件:三角形的一邊與矩形的一邊重合,且三角形的這邊所對的頂點在矩形這邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”。如圖(1)所示,矩形ABEF即為△ABC的“友好矩形”。顯然,當△ABC是鈍角三角形時,其“友好矩形”只有一個。

【小題1】仿照以上敘述,說明什么是一個三角形的“友好平行四邊形”
【小題2】如圖(2),若△ABC為直角三角形,且∠C=90°,在圖(2)
中畫出△ABC的所有“友好矩形”,并比較這些矩形面積的大;

【小題3】若△ABC是銳角三角形,且BC>AC>AB,在圖(3)中畫出△ABC的所有“友好矩形”,指出其中周長最大的矩形。(標上字母)

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江杭州蕭山瓜瀝片八年級第二學期5月月考數(shù)學試卷(解析版) 題型:解答題

閱讀以下短文,然后解決下列問題:

如果一個三角形和一個矩形滿足條件:三角形的一邊與矩形的一邊重合,且三角形的這邊所對的頂點在矩形這邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”。如圖(1)所示,矩形ABEF即為△ABC的“友好矩形”。顯然,當△ABC是鈍角三角形時,其“友好矩形”只有一個。

1.仿照以上敘述,說明什么是一個三角形的“友好平行四邊形”

2.如圖(2),若△ABC為直角三角形,且∠C=90°,在圖(2)

中畫出△ABC的所有“友好矩形”,并比較這些矩形面積的大小;

3.若△ABC是銳角三角形,且BC>AC>AB,在圖(3)中畫出△ABC的所有“友好矩形”,指出其中周長最大的矩形。(標上字母)

 

查看答案和解析>>

科目:初中數(shù)學 來源:期末題 題型:解答題

閱讀以下短文,然后解決下列問題:
如果一個三角形和一個矩形滿足條件:三角形的一邊與矩形的一邊重合,且三角形的這邊所對的頂點在矩形這邊的對邊上,則稱這樣的矩形為三角形的“友好矩形”,如圖①所示,矩形即為△的“友好矩形”,顯然,當△是鈍角三角形時,其“友好矩形”只有一個
(1)仿照以上敘述,說明什么是一個三角形的“友好平行四邊形”;
(2)如圖②,若△為直角三角形,且∠C=90°,在圖中畫出△的所有“友好矩形”,并比較這些矩形面積的大;
(3)若△是銳角三角形,且BC>AC>AB,在圖③中畫出△的所有“友好矩形”,指出其中周長最小的矩形并加以說明.

查看答案和解析>>

同步練習冊答案