已知等腰直角三角形的斜邊長為x,面積為y,則y與x的函數(shù)關(guān)系式為______.
已知如圖所示:
∵AC=BC,AC⊥BC,S△ABC=y.AB=x,
∴AC2+BC2=x2,
∴2AC2=x2
AC2=
x2
2
,
∵S△ABC=
1
2
AC•BC=
1
2
AC2=y,
∴y=
1
2
×
x2
2
=
x2
4

故答案為:y=
x2
4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y1=ax2+bx+c的頂點坐標為(2,1),且經(jīng)過點B(
5
2
,
3
4
),拋物線對稱軸左側(cè)與x軸交于點A,與y軸相交于點C.
(1)求拋物線解析式y(tǒng)1和直線BC的解析式y(tǒng)2
(2)連接AB、AC,求△ABC的面積.
(3)根據(jù)圖象直接寫出y1<y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)過點A(1,-3),B(3,-3),C(-1,5),頂點為M點.
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點P,使∠POM=90°.若不存在,說明理由;若存在,求出P點的坐標.
(3)試判斷拋物線上是否存在一點K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在平面直角坐標系xOy中,二次函數(shù)y=-2x2+bx+c的圖象經(jīng)過點A(-3,0)和點B(0,6).
(1)求此二次函數(shù)的解析式;
(2)將這個二次函數(shù)的圖象向右平移5個單位后的頂點設為C,直線BC與x軸相交于點D,求∠ABD的正弦值;
(3)在第(2)小題的條件下,聯(lián)結(jié)OC,試探究直線AB與OC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系中,A、B、C三點的坐標分別是(0,2)、(0,-2),(4,-2).
(1)請在給出的直角坐標系xOy中畫出△ABC,設AC交X軸于點D,連接BD,證明:OD平分∠ADB;
(2)請在x軸上找出點E,使四邊形AOCE為平行四邊形,寫出E點坐標,并證明四邊形AOCE是平行四邊形;
(3)設經(jīng)過點B,且以CE所在直線為對稱軸的拋物線的頂點為F,求直線FA的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.
(3)P是直線x=1右側(cè)的該拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A、P、M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知直線y=-
3
3
x+
2
3
3
交x軸于點C,交y軸于點A.等腰直角三角板OBD的頂點D與點C重合,如圖A所示.把三角板繞著點O順時針旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α<180°),使B點恰好落在AC上的B'處,如圖B所示.
(1)求圖A中的點B的坐標;
(2)求α的值;
(3)若二次函數(shù)y=mx2+3x的圖象經(jīng)過(1)中的點B,判斷點B′是否在這條拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知拋物線的對稱軸為直線x=4,該拋物線與x軸交于A、B兩點,與y軸交于C點,且A、C坐標為(2,0)、(0,3).
(1)求此拋物線的解析式;
(2)拋物線上有一點P,使以PC為直徑的圓過B點,求P的坐標;
(3)在滿足(2)的條件下,x軸上是否存在點E,使得△COE與△PBC相似?若存在,求出E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,矩形的窗戶分成上、下兩部分,用9米長的塑鋼制作這個窗戶的窗框(包括中間檔),設窗寬x(米),則窗的面積y(平方米)用x表示的函數(shù)關(guān)系式為______;要使制作的窗戶面積最大,那么窗戶的高是______米,窗戶的最大面積是______平方米.

查看答案和解析>>

同步練習冊答案