精英家教網(wǎng)折疊Rt△ABC,使直角頂點C與斜邊上的點D重合,AE為折痕,如圖.已知AC=2CE,則BC:CA:AB=
 
分析:設(shè)EC=ED=x,BD=y,然后利用△BDE∽△BCA得到BE的表達式,利用勾股定理求得x、y的關(guān)系式,然后用x表示出BC、AC、AB的長,再求比值即可.
解答:解:設(shè)EC=ED=x,BD=y,則AC=AD=2x,
∵∠DBE=∠CBA,∠EDB=∠C=90°,
∴△BDE∽△BCA,
∴BD:BC=BE:AB=DE:AC,
∵EC=ED,AC=2CE,
∴BD:BC=BE:AB=DE:AC=1:2,
∴DB=
1
2
BC=y,
即BC=2y,
在Rt△ABC中
(2x)2+(2y)2=(2x+y)2,
∴y=
4
3
x,
∴BC=2y=
8
3
x,AB=2x+
4
3
x=
10
3
x,
∴BC:CA:AB=
8
3
x:2x:
10
3
x
=4:3:5.
點評:此題綜合性強,綜合利用了折疊的性質(zhì)、勾股定理、相似三角形的判定等知識點,并運用了方程思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,將△ABC折疊,使點C與點A重合,折痕為DE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

折疊Rt△ABC,使直角頂點C與斜邊上的點D重合,AE為折痕,如圖.已知AC=2CE,則BC:CA:AB=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

折疊Rt△ABC,使直角頂點C與斜邊上的點D重合,AE為折痕,如圖.已知AC=2CE,則BC:CA:AB=______.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州市十五中九年級(上)月考數(shù)學(xué)試卷(12月份)(解析版) 題型:填空題

折疊Rt△ABC,使直角頂點C與斜邊上的點D重合,AE為折痕,如圖.已知AC=2CE,則BC:CA:AB=   

查看答案和解析>>

同步練習冊答案