【題目】如圖,在△ABC中,AB=AC=13,BC=10,點D為BC的中點,DE⊥AB于點E,則tan ∠BDE=
A. B. C. D.
【答案】D
【解析】
連接AD,由△ABC中,AB=AC=13,BC=10,D為BC中點,利用等腰三角形三線合一的性質(zhì),可證得AD⊥BC,再利用勾股定理,求得AD的長,那么在直角△ABD中根據(jù)三角函數(shù)的定義求出tan∠BAD,然后根據(jù)同角的余角相等得出∠BDE=∠BAD,于是tan∠BDE=tan∠BAD.
連接AD,
∵△ABC中,AB=AC=13,BC=10,D為BC中點,
∴AD⊥BC,BD=BC=5,
∴,
∴.
∵AD⊥BC,DE⊥AB,
∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,
∴∠BDE=∠BAD,
∴tan∠BDE=tan∠BAD= .
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.
(1)求關(guān)于的函數(shù)解析式;
(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達百花公園,先到了幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售某種品牌的手機,每部進貨價為2500元.市場調(diào)研表明:當銷售價為2900元時,平均每天能售出8部;而當銷售價每降低50元時,平均每天就能多售出4部.
(1)當售價為2800元時,這種手機平均每天的銷售利潤達到多少元?
(2)若設(shè)每部手機降低x元,每天的銷售利潤為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(3)商場要想獲得最大利潤,每部手機的售價應(yīng)訂為為多少元?此時的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等邊三角形,點E、F分別是邊BC、AC上的點,且BE=CF,AE、BF交于點D.
(1)如圖1,求證:AE=BF.
(2)如圖2,過點A作AG⊥BF于點G,過點C作CH∥AE交BF延長線于點H,若D為BG中點,求BH:CH的值;
(3)如圖3,在(2)的條件下,L為BA延長線上一點,且FL=FB,△FLA的面積為2,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).
A. 585米 B. 1014米 C. 805米 D. 820米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某幢大樓頂部有廣告牌CD,小宇身高MA為1.89米,他站在立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進15米,站在點B處測得廣告牌頂端點C的仰角為45°.
(1)求這幢大樓的高DH;
(2)求這塊廣告牌CD的高度.(取≈1.732,計算結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,平分交于點,延長至點平分,且的延長線交于點,若.
求證:;
求的度數(shù);
若在圖中繼續(xù)作與的平分線交于點,作與的平分線交于點,作與的平分線交于點,以此類推,作與的平分線交于點,請用含有的式了表示的度數(shù)(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在⊙O上.
(1)求∠AED的度數(shù);
(2)若⊙O的半徑為2,則的長為多少?
(3)連接OD,OE,當∠DOE=90°時,AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com