【題目】如圖,在平面直角坐標系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m(0<m<3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;
(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
【答案】(1)(2)1或2(3)存在;M1(2,2)M2(-2,)M3(4,)
【解析】
(1)將A、B兩點坐標代入拋物線解析式求出a、b即可得到解析式;
(2)過點D作y軸平行線交BC于點E,用m表示出D、E的坐標,求出DE線段的表達式,再利用面積關系建立方程求解;
(3)根據平行四邊形對角線互相平分,可知對角線上的兩個點的中點相同,可用中點坐標公式建立方程求解,設N(1,n),M(x,y),分3種情況討論即可.
(1)把A(-1,0),B(3,0)代入中,得:
解得:
∴拋物線解析式為
(2)過點D作y軸平行線交BC于點E
把代入中,得:,
∴C點坐標是(0,2),又B(3,0)
∴直線BC的解析式為
∵
∴
∴
由得:
∴
整理得:
解得 ,
∵0<m<3
∴m的值為1或2
(3)存在點M使得以B,C,M,N為頂點的四邊形是平行四邊形,
設N(1,n),M(x,y),
四邊形CMNB是平行四邊形時,CN、MB為對角線,
∴
∴x=2,代入拋物線得
∴M(-2,);
四邊形CNBM時平行四邊形時,CB、MN為對角線,
∴,
∴x=2,代入拋物線得
∴M(2,2);
四邊形CNMB時平行四邊形時,CM、BN為對角線,
∴,
∴x=4,代入拋物線得
∴M(4,);
綜上所述:存在M1(2,2)M2(-2,)M3(4,)
科目:初中數學 來源: 題型:
【題目】如圖,AD是∠BAC的平分線,DE平行AB交AC于點E,DF平行AC交AB于點F,延長FE交BC的延長線于點G.
求證:
(1)AG=DG;
(2)∠GAC=∠B.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次數學研究性學習中,小兵將兩個全等的直角三角形紙片ABC和DEF拼在一起,使點A與點F重合,點C與點D重合(如圖1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并進行如下研究活動.
活動一:將圖1中的紙片DEF沿AC方向平移,連結AE,BD(如圖2),當點F與點C重合時停止平移.
(思考)圖2中的四邊形ABDE是平行四邊形嗎?請說明理由.
(發(fā)現)當紙片DEF平移到某一位置時,小兵發(fā)現四邊形ABDE為矩形(如圖3).求AF的長.
活動二:在圖3中,取AD的中點O,再將紙片DEF繞點O順時針方向旋轉α度(0≤α≤90),連結OB,OE(如圖4).
(探究)當EF平分∠AEO時,探究OF與BD的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果店在兩周內,將標價為10元/斤的某種水果,經過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第x天(x為整數)的售價、銷量及儲存和損耗費用的相關信息如表所示.已知該種水果的進價為4.1元/斤,設銷售該水果第x(天)的利潤為y(元),求y與x(1≤x≤14)之間的函數關系式,并求出第幾天時銷售利潤最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解本校九年級學生期末數學考試情況,在九年級隨機抽取了一部分學生的期末數學成績?yōu)闃颖,分?/span>(分)、(分)、(分)、(分)四個等級進行統計,并將統計結果繪制成如下統計圖,請你根據統計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統計圖.
(3)這個學校九年級共有學生人,若分數為分(含分)以上為優(yōu)秀,請估計這次九年級學生期末數學考試成績?yōu)閮?yōu)秀的學生大約有多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“切實減輕學生課業(yè)負擔”是我市作業(yè)改革的一項重要舉措.某中學為了解本校學生平均每天的課外作業(yè)時間,隨機抽取部分學生進行問卷調查,并將調查結果分為A、B、C、D四個等級,A:1小時以內;B:1小時--1.5小時;C:1.5小時--2小時;D:2小時以上.根據調查結果繪制了如圖所示的兩種不完整的統計圖,請根據圖中信息解答下列問題:
(1)該校共調查了多少名學生?
(2)請將條形統計圖補充完整;
(3)在此次調查問卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時以上,從這4人中人選2人去參加座談,用列表或畫樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=16.連接AC,點P在線段AC上,PA=AC,作射線PM與邊AB相交于點E.將射線PM繞點P逆時針旋轉90°得到射線PN,射線PN與邊BC相交于點F.當△AEP的面積為時.在邊CD上取一點G.則△AFG周長的最小值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市實施城鄉(xiāng)生活垃圾分類管理,推進生態(tài)文明建設為增強學生的環(huán)保意識,隨機抽取名學生,對他們的垃圾分類投放情況進行調查,這名學生分別標記為,,,,,,,,其中“√”表示投放正確,“×”表示投放錯誤,統計情況如下表.
學生 垃圾類別 | ||||||||
廚余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求名學生中至少有三類垃圾投放正確的概率;
(2)為進一步了解垃圾分類投放情況,現從名學生里“有害垃圾”投放錯誤的學生中隨機抽取兩人接受采訪,試用標記的字母列舉所有可能抽取的結果,并求出剛好抽到、兩位學生的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com